Los sistemas funcionales

 

Los sistemas funcionales

Los Sistemas fundamentales del ser humano.  Al desarrollar esta materia se pretende que  logren comprender que el organismo humano requiere de un constante aporte de alimentos y de oxígeno y que además está en una permanente eliminación de productos de desecho. Para que una locomotora cumpla su trabajo en forma eficiente debe ser alimentada con combustible. Una locomotora a vapor necesitará carbón, una eléctrica deberá estar consumiendo energía eléctrica. Nuestro cuerpo también es una máquina y, como tal, necesita combustible para trabajar y para desarrollar todas sus actividades: correr, saltar, caminar, jugar, pensar y todo aquello que es capaz de realizar el hombre. Además, en cada acción y con el paso de los años las células del cuerpo y los tejidos se van gastando y deben ser repuestos. También deben fabricarse las células y tejidos para que el cuerpo crezca y se desarrolle desde su nacimiento. También veremos las partes más importantes de esa máquina maravillosa que permite estar en contacto con el mundo y conoceremos las características de su funcionamiento.

Resultado de imagen para Organos y sistemas del cuerpo humano

Órganos y sistemas de órganos

Los órganos son estructuras corporales de tamaño y forma característicos, que están constituidos por masas celulares llamadas tejidos y que llevan a cabo funciones vitales específicas. Ejemplos. el estómago, el hígado, el cerebro, etc.

Resultado de imagen para Organos y sistemas del cuerpo humano

En las imágenes que se muestran aparecen casi todos los órganos del cuerpo humano, solo faltan los llamados órganos de los sentidos que son: piel (tacto), ojos (visión), nariz (olfato), oído (audición) y boca (gusto), y otros tales como cerebro, ganglios (sistema linfático), y las glándulas endocrinas (producen hormonas). Los sistemas de órganos son grupos coordinados de órganos que trabajan juntos en amplias funciones vitales.

Los órganos se agrupan en once sistemas o aparatos y son:

  • Sistema Muscular Conjunto de músculos implicados en cambios en la forma corporal, postura y locomoción (como opuestos a la contractilidad de los órganos).
  • Aparato o Sistema Óseo Conjunto de huesos que forman el esqueleto, y protegen a los órganos internos como cerebro (cráneo) y médula espinal (columna vertebral).
  • Sistema Respiratorio Incluye a las fosas nasales, faringe, laringe, pulmones, etc., que facilitan el intercambio gaseoso.
  •  Sistema o aparato Digestivo Incluye a boca, hígado, estómago, intestinos, etcétera. En él se realiza la degradación de los alimentos a nutrientes para luego asimilarlos y utilizarlos en las actividades de nuestro organismo.
  • Sistema Excretor o Urinario Riñones y sus conductos, que funcionan en la extracción de desechos metabólicos, osmorregulación, y homeostasis (mantenimiento del equilibrio químico del cuerpo).
  • Sistema Circulatorio Corazón, vasos sanguíneos y células sanguíneas. Sirve para llevar los alimentos y el oxígeno a las células, y para recoger los desechos metabólicos que se han de eliminar después por los riñones, en la orina, y por el aire exhalado en los pulmones, rico en dióxido de carbono.
  • El sistema endocrino Glándulas productoras de hormonas que actúan en la regulación del crecimiento, metabolismo, y procesos reproductores.
  • Sistema Nervioso Cerebro, ganglios, nervios, órganos de los sentidos que detectan y analizan estímulos, y elaboran respuestas apropiadas mediante la estimulación de los efectores apropiados (principalmente músculos y glándulas).
  •  Aparato Reproductor Ggónadas (testículos y ovarios) que producen gametos, conductos genitales y órganos accesorios como glándulas y aparatos copuladores.
  • Sistema Linfático Capilares circulatorios o conductos en los que se recoge y transporta el líquido acumulado de los tejidos. El sistema linfático tiene una importancia primordial para el transporte hasta el torrente sanguíneo de lípidos digeridos procedentes del intestino, para eliminar y destruir sustancias tóxicas, y para oponerse a la difusión de enfermedades a través del cuerpo. 
  • Sistema inmunológico Está compuesto por órganos difusos que se encuentra dispersos por la mayoría de los tejidos del cuerpo.

La capacidad especial de sistema inmunológico es el reconocimiento de estructuras y su misión consiste en patrullar por el cuerpo y preservar su identidad El sistema inmunológico del hombre esta compuesto por aproximadamente un billón de células conocidas como linfocitos y por cerca de cien trillones de moléculas conocidas como anticuerpos, que son producidas y segregadas por los linfocitos. Además, podemos agregar al Sistema Hematopoyético, como aquel que se encarga de la producción de la sangre en el organismo. Al desarrollar esta materia se pretende que el alumno logre comprender que el organismo humano requiere de un constante aporte de alimentos y de oxígeno y que además está en una permanente eliminación de productos de desecho. Para que una locomotora cumpla su trabajo en forma eficiente debe ser alimentada con combustible. Una locomotora a vapor necesitará carbón, una eléctrica deberá estar consumiendo energía eléctrica. Nuestro cuerpo también es una máquina y, como tal, necesita combustible para trabajar y para desarrollar todas sus actividades: correr, saltar, caminar, jugar, pensar y todo aquello que es capaz de realizar el hombre. Además, en cada acción y con el paso de los años las células del cuerpo y los tejidos se van gastando y deben ser repuestos. También deben fabricarse las células y tejidos para que el cuerpo crezca y se desarrolle desde su nacimiento. También veremos las partes más importantes de esa máquina maravillosa que permite estar en contacto con el mundo y conoceremos las características de su funcionamiento.

Resultado de imagen para Organos y sistemas del cuerpo humano

Órganos y sistemas de órganos

Los órganos son estructuras corporales de tamaño y forma característicos, que están constituidos por masas celulares llamadas tejidos y que llevan a cabo funciones vitales específicas. Ejemplos. El estómago, el hígado, el cerebro, etc. En las imágenes que se muestran aparecen casi todos los órganos del cuerpo humano, solo faltan los llamados órganos de los sentidos que son: piel (tacto), ojos (visión), nariz (olfato), oído (audición) y boca (gusto), y otros tales como cerebro, ganglios (sistema linfático), y las glándulas endocrinas (producen hormonas). Los sistemas de órganos son grupos coordinados de órganos que trabajan juntos en amplias funciones vitales. Los órganos se agrupan en once sistemas o aparatos y son:

Sistema muscular

Es el conjunto de músculos que recubren a nuestro cuerpo. Éste se divide en siete grandes regiones musculares: Cabeza, Región anterior del cuello, Región posterior del tronco y del cuello, Tórax, Abdomen, Extremidades superiores y Extremidades inferiores. Los músculos están constituidos por haces de células de forma alargada llamadas fibras musculares, las cuales son contráctiles, es decir, pueden encogerse cuando reciben un estímulo y, además, son elásticas, lo cual significa que cuando cesa el estímulo se alargan de nuevo hasta adquirir su posición original. Existen músculos largos (en las extremidades), anchos (tórax) y cortos (cabeza).

La función que tienen depende del tipo de fibra que contengan mayoritariamente:

  1. . Fibras musculares estriadas, éstas hacen que la contracción sea sumamente rápida y puede ser controlada a voluntad por la persona. Estos músculos se encuentran unidos a huesos y al contraerse hace que el conjunto se desplace, así se logra el movimiento de las extremidades.
  2. . Fibras musculares lisas, la contracción de éstas es lenta y el movimiento que producen es involuntario. Estos músculos intervienen en la actividad motora del estómago, intestino, y otros órganos internos, con excepción del corazón., el cual está constituido por un tipo especial de fibras musculares que le permiten un movimiento espontáneo, rítmico e independiente de la voluntad, aunque la frecuencia de su ritmo se puede ver alterada por factores externos como la temperatura o un reacciones cerebrales.

Resultado de imagen para Enfermedades musculares

Enfermedades musculares

Las enfermedades musculares más comunes son:

  1. .- Enfermedades neurógenas son atrofias por denervación: Son enfermedades discapacitantes que se produce una lesión en el cuerpo a nivel de neuronas (células que conducen los impulso nerviosos). Pueden ser atrofias a nivel espinal o a nivel de todo el cuerpo, en las que se incluyen las fallas nerviosas a nivel hereditario. Pueden producirse por un accidente o por una falla hereditaria.
  2. .- Distrofias musculares: enfermedad incapacitante caracterizada por una degeneración creciente del músculo esquelético. Con el paso del tiempo aumenta la debilidad, y disminuyen la funcionalidad y la masa muscular hasta que el paciente necesita una silla de ruedas para desplazarse. Hay varias formas clínicas, que se diferencian unas de otras por el patrón de transmisión hereditaria, por la edad de inicio de la enfermedad y por la distribución de los grupos musculares afectados. En todas las formas de la enfermedad se detectan fallas a nivel de células motoras o neuronales.
  3. .- Miopatías ya sean congénitas (heredadas por los genes paternos), inflamatorias (se hinche el músculo del ojo), metabólicas (producidas por la alteración a nivel metabólico del organismo), etc. Las miopías se producen por la incapacidad de los músculos oculares para cambiar la forma de las lentes y enfocar de forma adecuada la imagen en la retina o por una falla congénita que lleva a una deformación del globo ocular.

Sistema óseo

El número total de huesos que posee un determinado animal varía con su edad porque muchos huesos se fusionan entre sí durante el proceso de osificación. El número de estructuras esqueléticas diferentes en una persona es de 208 huesos cuyos tamaños oscilan desde el fémur (el hueso más largo del esqueleto) a los diminutos huesos del interior del oído (donde se halla el hueso más pequeño del esqueleto, que es el estribo en el oído medio).

Como vemos, hay varios tipos de huesos:

  1. Largos, como los del brazo o la pierna
  2. Cortos, como los de la muñeca o las vértebras
  3. Planos, como los de la cabeza.

Resultado de imagen para Sistema óseo

El cuerpo humano es una maravillosa y compleja estructura formada por varios sistemas funcionales, sostenidos o protegidos por una armazón dura compuesta de más de doscientos huesos, un centenar de articulaciones y más de 650 músculos, todo actuando coordinadamente. Gracias a la colaboración entre huesos y músculos, el cuerpo humano mantiene su postura, puede desplazarse y realizar múltiples acciones.

El conjunto de huesos y cartílagos forma el Esqueleto.

El hueso es un tejido sorprendente, ya que combina células vivas (osteocitos) y materiales inertes (sales de calcio). De esta unión, surge la fuerza, pero también la ligereza y la resistencia de los huesos. Los huesos se están renovando constantemente.

División del Sistema Óseo

Para hacer más comprensible el estudio del cuerpo humano, éste se ha dividido en: Cabeza, Tronco y Extremidades. En el cuerpo humano existen 208 huesos:

  • 26 en la columna vertebral
  • 8 en el cráneo
  • 14 en la cara
  • 8 en el oído
  • 1 hueso Hioides
  • 25 en el tórax
  • 64 en los miembros superiores
  • 62 en los miembros inferiores

Huesos de la cabeza

La cabeza se une a la parte superior de la columna vertebral. Los huesos del cráneo son anchos curvos. Forman una fuerte bóveda que protege al cerebro. La cabeza esta constituida por el cráneo y la cara. Es una sucesión compleja de huesos que protegen el encéfalo y a otros órganos del sistema nervioso central. También da protección a los órganos de los sentidos, a excepción del tacto que se encuentra repartido por toda la superficie de la piel.

  1. Los huesos del cráneo son 8 y forman una caja resistente para proteger el cerebro.
  2. Los huesos de la cara son 14. Entre ellos los más importantes son los maxilares (superior e inferior) que se utilizan en la masticación.

Resultado de imagen para Sistema óseo

Huesos del Tronco

A la cabeza le sigue el tórax. Éste está formado por veinticuatro costillas. Las costillas se unen todas por detrás a la columna vertebral. Por delante, se unen al esternón solamente veinte de ellas, mediante un tejido especial que es más blando que los huesos y que recibe el nombre de cartílago. Unidas de esta manera, las costillas forman una jaula protectora para el corazón y los pulmones. En la parte superior del tórax, a ambos lados, se encuentran las clavículas por delante y los omóplatos por detrás. Las clavículas se unen a la parte de arriba del esternón por uno de sus extremos. Sus otros extremos se unen a los omóplatos, formando los hombros, donde nacen los brazos. La clavícula y el omóplato, que sirven para el apoyo de las extremidades superiores. Las costillas protegen a los pulmones, formando la caja torácica.

Imagen relacionada

Columna vertebral

La columna vertebral es el eje del esqueleto, es un pilar recio, pero flexible. Todos los huesos están unidos a ella directa o indirectamente. La columna vertebral está formada por huesos pequeños, que reciben el nombre de vértebras.

En el ser humano la columna vertebral está constituida por 33 vértebras, que son, según su número y localización:

  1. 7 cervicales (la 1ª llamada Atlas y la 2ª Axis)
  2. 12 dorsales o torácicas
  3. 5 lumbares
  4. 5 sacras (sin articulación entre ellas pues están fundidas y componen el hueso llamado Sacro)
  5. 4 coccígeas (sin articulación entre ellas pues están fundidas y componen el hueso llamado cóccix. Tampoco existe articulación entre el sacro y el cóccix; según teorías evolutivas sería la reminiscencia del rabo o cola correspondiente a otras especies animales).

Esta distribución siempre es así, salvo en las anomalías denominadas lumbarización y sacralización. Las vértebras están perforadas en el centro, y todas juntas forman un canal protector, donde se aloja la médula espinal, que forma parte del sistema nervioso. Los huesos de las extremidades son largos. Son órganos de sostén.

Imagen relacionada

Huesos de las extremidades superiores

Clavícula, omóplato y húmero formando la articulación del hombro. El húmero, en el brazo. El cúbito y el radio en el antebrazo.

Huesos de la mano

  1. El carpo, formado por 8 huesecillos de la muñeca.
  2. Los metacarpianos en la mano.
  3. Las falanges en los dedos.

Resultado de imagen para Sistema óseo
Huesos de las extremidades inferiores

El hueso de cada muslo es el fémur. Esos dos huesos son los más largos del cuerpo.

  1. La pelvis y el fémur, formando la articulación de la cadera.
  2. La rótula en la rodilla.
  3. La tibia y el peroné, en la pierna.
  4. El tarso, formado por 7 huesecillos del talón.
  5. El metatarso en el pie.
  6. Las falanges en los dedos.

Imagen relacionada

Huesos de la cadera

Bones of the Pelvis

Un conjunto de huesos que forma la pelvis (ilion, isquión y pubis), se une a la parte inferior de la columna vertebral. La pelvis sostiene los intestinos y otros órganos internos del abdomen. La parte superior de la pelvis es lo que comúnmente llamamos caderas. A ambos lados de la parte inferior de aquella nacen las piernas.

Algunas características de los huesos:

La dureza de los huesos se debe a que contienen gran cantidad de calcio. Este es proporcionado a los huesos por las células vivas que hay en el interior de ellos. Las células que forman el tejido de los huesos obtienen el calcio de la leche y de otros alimentos, ricos en este mineral. Los huesos están cubiertos por una sustancia mineral, pero no por eso son partes sin vida del cuerpo. Los huesos viven porque crecen. La parte viva está constituida por las células.

Los huesos nos sostienen

La estructura de un edificio sostiene paredes y techos y protege lo que se guarda en su interior. Del mismo modo, las funciones de los huesos en el esqueleto son múltiples: Sostienen al organismo y protegen a los órganos delicados, a la vez que sirven de punto de inserción a los tendones de los músculos. El interior de los huesos largos aloja la medula ósea, un tejido noble que fabrica glóbulos rojos y blancos. Sostienen las partes blandas del cuerpo y le dan consistencia a éste. Son el apoyo de los músculos y permiten producir los movimientos. El esqueleto humano es, por lo tanto, la estructura o el armazón que sostiene y protege el edificio de nuestro cuerpo. Pero no olvidar que hay una diferencia entre las piezas del armazón humano y las estructuras de un edificio: las primeras son partes vivas del cuerpo.

Las articulaciones

Los huesos se mantienen unidos por medio de las articulaciones o coyunturas. Hay articulaciones fijas, como las de los huesos del cráneo y de la cara, exceptuando la mandíbula inferior, que necesita moverse para masticar los alimentos. Las vértebras, los huesos de las piernas y brazos están unidos mediante articulaciones movibles. Los huesos se mantienen unidos por ligamentos. Además, hay unas glándulas que segregan un líquido parecido a la clara de huevo, que evita el roce de un hueso con otro. Ese líquido se llama sinovial, y las glándulas, bolsas sinoviales.

Sistema respiratorio

La respiración es el proceso por el cual ingresamos aire (que contiene oxígeno) a nuestro organismo y sacamos de él aire rico en dióxido de carbono. Un ser vivo puede estar varias horas sin comer, dormir o tomar agua, pero no puede dejar de respirar más de tres minutos. Esto grafica la importancia de la respiración para nuestra vida.

El sistema respiratorio de los seres humanos está formado por:

Las vías respiratorias: son las fosas nasales, la faringe, la laringe, la tráquea, los bronquios y los bronquíolos.

  • La boca también es, un órgano por donde entra y sale el aire durante la respiración.
  • Las fosas nasales son dos cavidades situadas encima de la boca. Se abren al exterior por los orificios de la nariz (donde reside el sentido del olfato) y se comunican con la faringe por la parte posterior.
  • En el interior de las fosas nasales se encuentra la membrana pituitaria, que calienta y humedece el aire que inspiramos. De este modo, se evita que el aire reseque la garganta, o que llegue muy frío hasta los pulmones, lo que podría producir enfermedades. No confundir esta membrana pituitaria con la glándula pituitaria o hipófisis.
  • La faringe se encuentra a continuación de las fosas nasales y de la boca. Forma parte también del sistema digestivo. A través de ella pasan el alimento que ingerimos y el aire que respiramos.
  • La laringe está situada en el comienzo de la tráquea. Es una cavidad formada por cartílagos que presenta una saliente llamada comúnmente nuez. En la laringe se encuentran las cuerdas vocales que, al vibrar, producen la voz.
  • La tráquea es un conducto de unos doce centímetros de longitud. Está situada delante del esófago.
  • Los bronquios son los dos tubos en que se divide la tráquea. Penetran en los pulmones, donde se ramifican una multitud de veces, hasta llegar a formar los bronquiolos.

Resultado de imagen para pulmones

Los pulmones

Son dos órganos esponjosos de color rosado que están protegidos por las costillas. Mientras que el pulmón derecho tiene tres lóbulos, el pulmón izquierdo sólo tiene dos, con un hueco para acomodar el corazón. Los bronquios se subdividen dentro de los lóbulos en otros más pequeños y éstos a su vez en conductos aún más pequeños. Terminan en minúsculos saquitos de aire, o alvéolos, rodeados de capilares. Una membrana llamada pleura rodea los pulmones y los protege del roce con las costillas.

Alvéolos

En los alvéolos se realiza el intercambio gaseoso: cuando los alvéolos se llenan con el aire inhalado, el oxígeno se difunde hacia la sangre de los capilares, que es bombeada por el corazón hasta los tejidos del cuerpo. El dióxido de carbono se difunde desde la sangre a los pulmones, desde donde es exhalado. El transporte de oxígeno en la sangre es realizado por los glóbulos rojos, quienes son los encargados de llevarlo a cada célula, de nuestro organismo, que lo requiera. Al no respirar no llegaría oxígeno a nuestras células y por lo tanto no podrían realizarse todos los procesos metabólicos que nuestro organismo requiere para subsistir, esto traería como consecuencia una muerte súbita por asfixia (si no llega oxígeno a los pulmones) o una muerte cerebral (si no llega oxígeno al cerebro. Proceso de inspiración y exhalación del aire.

Inspiración

Cuando el diafragma se contrae y se mueve hacia abajo, los músculos pectorales menores y los intercostales presionan las costillas hacia fuera. La cavidad torácica se expande y el aire entra con rapidez en los pulmones a través de la tráquea para llenar el vacío resultante.

Resultado de imagen para Inspiración

Espiración

Cuando el diafragma se relaja, adopta su posición normal, curvado hacia arriba; entonces los pulmones se contraen y el aire se expele.

Aparato digestivo

La función principal del aparato digestivo es recibir los alimentos desde el exterior, procesarlos a partir de la MASTICACIÓN en la boca y separar los elementos que sean nutritivos para el organismo humano.

Imagen relacionada

El aparato digestivo está formado por varios órganos:

Boca

Es la cavidad donde comienza el TUBO DIGESTIVO. En su interior se encuentran

  1. la LENGUA,
  2. los DIENTES,
  3. las ENCÍAS,
  4. el PALADAR,
  5. las AMÍGDALAS,
  6. la ÚVULA
  7. los ORIFICIOS SALIVALES.

Resultado de imagen para boca anatomia

Faringe

La faringe es un tubo muscular que comunica el aparato o sistema respiratorio con el digestivo. La faringe es la parte que viene después de la boca. Esta cavidad se comunica con la nariz por dos agujeros, y también con el oído por otros dos conductos (trompas de Eustaquio). También se comunica con el tubo respiratorio (tráquea); pero en el momento de pasar el alimento, este paso se cierra por medio de una válvula, llamada epiglotis, que impide que aquel vaya a parar al tubo respiratorio. En la faringe se halla el velo del paladar, que se prolonga hacia los lados en dos repliegues, que son los pilares. En los pilarares se encuentran unas glándulas llamadas amígdalas, que defienden el organismo de las infecciones.

Resultado de imagen para laringe anatomia

a faringe se comunica además con el esófago, que un tubo largo, situado a continuación de la faringe, que conduce el alimento al estómago.

Laringe

La laringe es el órgano donde se produce la voz, contiene las cuerdas vocales y constituye también un paso obligado para los gases respiratorios. La laringe es el órgano de la voz, pero además constituye parte importante de la vía aérea y es también su mecanismo de protección pues evita el pasaje de los alimentos con el reflejo de tos y la dinámica de protección de la epiglotis. Está situada encima de la tráquea, que es su continuación. Tiene la forma de una pirámide triangular invertida formada por piezas cartilaginosas que se articulan entre sí y unen por ligamentos, músculos y cubiertos por una mucosa que está constituida por una serie de repliegues de tejido epitelial.

Esófago

El esófago es un conducto músculo membranoso (un tubo muscular), ubicado en la parte media del tórax, que se extiende desde la faringe hasta el estómago. A través del esófago pasan los alimentos hasta el estómago. Su función consiste en ser precisamente el conducto de unión entre la boca y el estómago y permitir que los alimentos lleguen a éste. Desde la parte superior hasta la porción donde el esófago se une con el estómago hay unos cuarenta centímetros. El esófago empieza en el cuello, atraviesa todo el tórax y pasa al abdomen a través del hiato esofágico del diafragma. Habitualmente es una cavidad virtual (es decir que sus paredes se encuentran unidas y sólo se abren cuando pasa el bolo alimenticio).

El esófago está formado por:

Resultado de imagen para Reflujo esofágico

  1. Mucosa: Formada por varias capas de células, que recubre al esófago en su parte interna. Esta mucosa se renueva continuamente por la formación de nuevas células.
  2. Capa muscular: Está formado a su vez por una capa interna de células musculares lisas concéntricas y otra capa externa de células musculares longitudinales, que cuando se contraen forman ondas peristálticas que conducen el globo alimenticio al estómago.

Alimento desde el esófago hacia el estómago

  • Esfínter esofágico superior: separa la faringe del esófago. Está formado por un músculo estriado, es decir, voluntario, que inicia la deglución.
  • Esfínter esofágico inferior: que separa el esófago del estómago. Realmente no es un esfínter anatómico, sino fisiológico, al no existir ninguna estructura de esfínter pero sí poseer una presión elevada cuando se mide en reposo. Este esfínter, disminuye su tono normalmente elevado, en respuesta a varios estímulos como
  1. ) la llegada de la onda peristáltica primaria
  2. ) la distensión del esófago cuando pasa el bolo alimenticio (peristalsis secundaria)
  3. ) la distensión gástrica.

La presión elevada en reposo se mantiene tanto por contribuciones de nervios como de músculos, mientras que su relajación ocurre en respuesta a factores neurogénicos. Su función es exclusivamente motora propulsa el alimento a través del tórax en su tránsito desde la boca al estómago (no realiza funciones de absorción ni digestión).

Reflujo esofágico

El término reflujo gastroesofágico es utilizado por el médico para nombrar una enfermedad que consiste en la devolución del contenido del estómago hacia el esófago, y las molestias y lesiones que acompaña este paso anormal.

Reflujo: alimento se devuelve hacia el esófago. Decimos que se trata de un paso anormal, porque la dirección normal es que los alimentos desciendan por el esófago hacia el estómago y estos se mezclen con el jugo que se encuentra en este órgano para su digestión y que posteriormente pasen al intestino donde terminan de ser digeridos y se absorben como nutrientes para la persona. Cuando por cualquier causa se presenta esta anomalía, el contenido del estómago formado por ácido clorhídrico, pepsina (enzima con la función de digerir) y otras sustancias entran en contacto con la mucosa que forma parte del esófago. Mucosa que no está preparada para aguantar la acción corrosiva del ácido o la acción degradadora de la pepsina, generándose irritaciones y lesiones de esta parte del aparato digestivo. Esta enfermedad, también es agrupada bajo el término de enfermedad ácido-péptica junto con otras enfermedades como puede ser la úlcera péptica, debido a que los agentes que causan las irritaciones y daño son las sustancias que se encuentran presentes en el jugo secretado por el estómago.

Estómago

El estómago, órgano principal de la digestión, y la parte más grande del aparato digestivo, tiene la forma de un saco elástico que puede aumentar o disminuir su tamaño según la cantidad de alimento que contenga. Este órgano posee dos aberturas: una que comunica con el esófago, por donde entran los alimentos, que se llama cardias, y otra de salida que los conduce a los intestinos, una vez digeridos, que se llama píloro.

Imagen relacionada

Alimentos se mezclan, se disuelven y se almacenan en el estómago. Las paredes del estómago están formadas por varias capas. Una de ellas es muy musculosa, sirviendo sus contracciones para amasar el bolo alimenticio cuando se halla en el estómago, completando la acción mecánica y facilitando así su mezcla con los jugos digestivos. La membrana interior es una membrana mucosa que, examinada a través de una lupa, presenta unos hoyitos, en el fondo de los cuales aparece un punto oscuro. Este punto es la abertura de las glándulas gástricas, que segregan un líquido digestivo, claro y ácido, llamado jugo gástrico, que contiene ácido clorhídrico y las enzimas pepsina, gastrina y lipasa que ayudan a digerir los hidratos de carbono, las proteínas y las grasas del alimento. Específicamente, la pepsina, secretada por las glándulas gástricas, fracciona las proteínas en fragmentos más pequeños. El píloro controla el extremo inferior del estómago y es un esfínter que admite en el duodeno el alimento digerido, después de que lo hayan procesado convenientemente los jugos digestivos.

Resultado de imagen para estomago

Secciones principales del estómago

Los tejidos del estómago

La pared del estómago está formada por las capas características de todo el tubo digestivo:

  • La capa mucosa y la tela submucosa
  • La capa muscular
  • La capa serosa.
  • La capa mucosa
  • La capa mucosa del estómago presenta a su vez tres subcapas:
  • El epitelio
  • La lámina propia de la mucosa
  • La lámina muscular de la mucosa

Epitelio superficial: aparece bruscamente en el cardias, y en polo apicalde sus células se distingue una gruesa capa de moco gástrico, que sirve de protección contra las sustancias ingeridas, contra el ácido estomacal y contra las enzimas gástricas.

Glándulas del cardias: están situadas alrededor de la unión gastroesofágica.

  • Las células endocrinas ubicadas en el fundus producen gastrina, molécula controladora del ácido clorhídrico presente en el jugo gástrico.
  • Glándulas oxínticas, gástricas o fúndicas: se localizan sobre todo en el fundus y en el cuerpo del estómago y producen la mayor parte del jugo gástrico.

Se estima que el estómago posee quince millones de glándulas oxínticas, que están compuestas por cinco tipos de células:

 

  1. Células principales o zimógenas: son las células que producen el pepsinógeno (I y II)
    Resultado de imagen para Membrana mucosa interior del estómago
    Membrana mucosa interior del estómago.
  2. Células oxínticas o parietales: son las células que segregan el ácido clorhídrico y el factor intrínseco gástrico o factor intrínseco de Castle.
  3. Células mucosas del cuello: segregan mucosa alcalina.
  4. Células endocrinas: pueden ser células
    • G (liberadoras de gastrina),
    • D (segregan somatostatina),
    • EC (segregan serotonina) o células cebadas (liberadoras de histamina).

     

  5. Células madre: se supone que generan todos los tipos celulares, excepto las células endocrinas.
  6. Glándulas pilóricas: Están situadas cerca del píloro. Segrega principalmente secreción viscosa y espesa, que es el mucus para lubricar el interior de la cavidad del estómago, para que el alimento pueda pasar, protegiendo así las paredes del estómago.
  7. Lámina propia de la mucosa: formada por tejido conectivo laxo, posee glándulas secretoras de mucus y enzimas.
  8. Lámina muscular de la mucosa: que presenta dos capas, poco diferenciadas entre sí.

Tela submucosa

Formada por tejido conjuntivo moderadamente denso (tejido de sostén que conecta o une las diversas partes del cuerpo), en el cual se encuentran numerosos vasos sanguíneos, linfáticos y terminaciones nerviosas. Está debajo de la mucosa.

Resultado de imagen para Tela submucosa

Capa muscular

La capa muscular gástrica puede considerarse como el músculo gástrico porque gracias a sus contracciones (movimientos peristálticos) el bolo alimenticio se mezcla con los jugos gástricos y se desplaza hacia el píloro.

Capa serosa

La capa serosa, constituida por tejido conectivo laxo tapizado por una capa epitelial llamada mesotelio, envuelve al estómago en toda su extensión, expandiéndose en sus curvaturas para formar el omento menor, el omento mayor y el ligamiento gastrofrénico.

Fisiología gástrica

El estómago está controlado por el sistema nervioso autónomo, siendo el nervio vago el principal componente del sistema nervioso parasimpático. La acidez del estómago está controlada por tres moléculas que son la acetilcolina, la histamina y la gastrina.

Afecciones del estómago

En el estómago se produce la absorción de agua, alcohol y de algunas sales minerales. En general, después de permanecer en el estómago el tiempo necesario, los alimentos forman una papilla, llamada quimo, que pasará poco a poco al intestino delgado. Alimentos se mezclan, se disuelven y se almacenan en el estómago Como vimos, el estómago está surcado por un duro revestimiento de mucosa que lo protege de los jugos gástricos, de modo que no se digiera a sí mismo. A veces, una parte de este revestimiento se desgasta y los jugos digestivos irritan el revestimiento estomacal. Esta condición se conoce como úlcera y es algo común que puede afectar al estómago, la parte inferior del esófago o el duodeno. En los casos de cáncer estomacal o gástrico, se habla de que el tratamiento aceptado como estándar es la cirugía, practicando una extirpación del estómago enfermo. Dependiendo de la localización del tumor dentro del estómago, estará indicado extirpar parte o todo el estómago (gastrectomía total). También, en ocasiones, es necesaria la extirpación de órganos vecinos como el bazo.

Imagen relacionada

Gastrectomía total

Cuando la localización de tumores es tan grande que es imprescindible extirpar todo el estómago, se cae en el campo quirúrgico de una serie de técnicas que unen el esófago al intestino, efectuando una gama de variedades de sustitutos gástricos. En una gastrectomía total se extrae todo el estómago y partes del esófago, el intestino delgado y otros tejidos cercanos al tumor. El bazo se extrae en algunos casos. También se extrae los ganglios linfáticos cercanos (disección de ganglios linfáticos). El esófago se conecta al intestino delgado para que el paciente pueda continuar comiendo y tragando. Si se extirpa todo el estómago, es posible que el paciente necesite ingerir comidas pequeñas y frecuentes y alimentos que contengan poca azúcar y mucha grasa y proteína. La mayoría de los pacientes pueden ajustarse a este nuevo régimen alimenticio.

Intestino delgado y absorción

Situado en la cavidad abdominal, el intestino delgado es un tubo alargado y hueco con paredes más delgadas que las delestómago. Mide entre siete y nueve metros de largo, plegado varias veces. Se divide en tres partes: duodeno (la parte más cercana al estómago), yeyuno (la porción media) e íleon (el tramo final).

Resultado de imagen para aparato digestivo

Al igual que el estómago, el intestino tiene músculos, los que al moverse hacen que los alimentos vayan avanzando. La pared interior del intestino delgado no es lisa, sino que presenta una gran cantidad de «pelitos» llamados vellosidades intestinales, las que están irrigadas internamente por pequeños vasos sanguíneos. El páncreas produce el jugo pancreático y el hígado, la bilis. Estos dos jugos son vertidos al intestino delgado. La bilis ayuda a disolver las grasas, lo que facilita su asimilación. Mientras, el jugo pancreático, completa la digestión de las proteínas y los azúcares, proceso que comenzó en el estómago, junto al jugo intestinal, producido por las paredes del intestino delgado. Una vez digeridos los alimentos, sus componentes deben pasar a la sangre para ser distribuidos a todos los órganos del cuerpo. El paso de los alimentos a la sangre, a través de las vellosidades intestinales, se llama absorción.

El resultado de la acción de estos jugos es conseguir que:

  1. Los hidratos de carbono se transformen en monosacáridos
  2. Las grasas se rompan en ácidos grasos y glicerina
  3. Las proteínas se rompan en aminoácidos

COMPOSICIÓN DE LOS JUGOS QUE SE VIERTEN AL INTESTINO DELGADO

Bilis Jugo intestinal Jugo pancreático
agua sales inorgánicas sales biliares
pigmentos biliares acidos biliares grasas
colesterol fosfatasa alcalina agua
iones inorgánicos mucina lactasa, maltasa, sacarasa
lipasa intestinal peptidasas enteroquinasa
agua iones inorgánicos peptidasas inactivas carboxipeptidasas
amilasa pancreática lipasa pancreática nucleasas pancreáticas

Al finalizar la digestión, el quimo se ha transformado en un líquido lechoso, llamado quilo formado por:

agua monosacáridos aminoácidos
glicerina bases nitrogenadas productos no digeridos

La digestión ha terminado y sus productos deben traspasar la pared intestinal (absorción) para ingresar en el torrente circulatorio y ser transportados a todas las células del cuerpo. La absorción se realiza molécula a molécula a través de la pared intestinal.

Intestino grueso

El intestino grueso, llamado también colon, se inicia a partir de la válvula ileocecal en un fondo de saco denominado ciego, punto de unión con el intestino delgado, y de donde sale el apéndice vermiforme. Desde el ciego describe una serie de curvas, formando un marco, para terminar en el recto y el ano. Su longitud es variable, entre 120 y 160 centímetros, y su calibre disminuye progresivamente, siendo la porción más estrecha la región donde se une con el recto donde su diámetro no suele sobrepasar los tres centímetros, mientras que en el ciego es de seis o siete centímetros. En el intestino grueso se diferencian varias porciones, entre ellas tenemos:

  • La primera porción que está constituida por un saco ciego, situada inferior a la válvula ileocecal y que da origen al apéndice vermiforme.
  • La segunda porción es denominada como colon ascendente con una longitud de quince centímetros, para dar origen a la tercera porción que es el colon transverso, con una longitud media de cincuenta centímetros, originándose una cuarta porción que es el colon descendente con diez centímetros de longitud, por último se diferencia el colon sigmoideo, recto y ano.
  • El recto es la parte terminal del tubo digestivo. Es la continuación del colon sigmoideo y termina abriéndose al exterior por el orificio anal.
  • El intestino grueso, o colon, es el último componente del sistema o aparato digestivo y realiza la fase terminal de la digestión.
  • El intestino grueso toma el alimento digerido (quimo) proveniente desde el intestino delgado y termina el proceso de absorción. Por lo tanto, la función principal del intestino grueso en el sistema digestivo es la concentración y almacenamiento de los desechos sólidos, convirtiendo el quimo en heces para ser excretadas.

Durante este proceso las células que recubren el colon reabsorben agua del quimo, cambiando su estado de líquido a sólido. Miles de millones de bacterias dentro del colon sintetizan sales que no han sido digeridas en su paso por el intestino delgado y las vitaminas K y B, así como gases hidrógeno, dióxido de carbono, sulfuro de hidrógeno y metano. Segmentos musculares del intestino grueso, llamados haustros, empujan esta materia y la remueven dentro del intestino grueso con movimientos sucesivos, mezclándola por completo. Al no ser defecadas las heces, cuando es necesario, el colon continua absorbiendo agua, volviéndolas duras y causando estreñimiento. Por lo general, el alimento pasa más tiempo en el colon que en ningún otro sitio del tubo digestivo, este tiempo puede variar dependiendo del tipo de alimento y de cada persona. En el colon puede permanecer aproximadamente desde nueve horas hasta varios días.

Sistema o aparato excretor

El sistema o aparato excretor es el encargado de eliminar las sustancias tóxicas y los desechos de nuestro organismo. El sistema excretor está formado por el aparato urinario, los pulmones y la piel. El aparato unitario lo forman los riñones y las vías urinarias. Al sistema excretor debe añadirse el intestino grueso o colon, que acumula desechos en forma de heces para ser excretadas por el ano.

Resultado de imagen para Sistema o aparato excretor

Los riñones son dos órganos con forma de poroto, de color café, situados a ambos lados del cuerpo por debajo de la cintura. A través de la arteria renal, llega a los riñones la sangre cargada de sustancias tóxicas. Dentro de los riñones, la sangre recorre una extensa red de pequeños capilares que funcionan como filtros. De esta forma, los desechos que transporta la sangre quedan retenidos en el riñón y se forma la orina. La orina es un líquido amarillento compuesto por agua, sales minerales y sustancias tóxicas para el organismo como la urea y el ácido úrico. Luego la orina pasa a través de las vías urinarias. Las vías urinarias están formadas por los uréteres, la vejiga y la uretra. Los uréteres son dos tubos que salen uno de cada riñón y van a parar a la vejiga urinaria. Por ellos circula la orina formada en los riñones. La vejiga urinaria es una bolsa de paredes elásticas que almacena la orina hasta el momento de la expulsión. Para que la orina no salga continuamente, existe un músculo llamado esfínter, que cierra la vejiga. La sangre sale del riñón mediante la vena renal. Ya no contiene urea ni ácido úrico, pero todavía tiene dióxido de carbono. Por ello pasa a la vena cava y de ahí al corazón para dirigirse finalmente a los pulmones.

Resultado de imagen para La piel

La piel

Cuando hace mucho calor, sudamos para enfriar el cuerpo y eliminar las sustancias tóxicas. La cantidad de sudor que excretamos en un día es variable, aunque normalmente la cantidad aproximada es de medio litro. El sudor es un líquido claro, de gusto salado, compuesto por agua y sales minerales. La cantidad y composición del sudor no siempre es la misma ya que está regulado por el sistema nervioso. El sudor se produce en las glándulas sudoríparas, que están situadas en la piel de todo el cuerpo, especialmente en la frente, en la palma de las manos, en la planta de los pies, en las axilas… Luego, sale al exterior a través de unos orificios de la piel llamados poros.

Los pulmones

Su función es poner el oxígeno aspirado, a través de la nariz, en contacto con la sangre y a través de ella con los tejidos. El dióxido de carbono producido, como desecho metabólico, se elimina de la sangre en los pulmones y sale al exterior a través de las fosas nasales o la boca.

Resultado de imagen para higado

El hígado

El hígado participa del sistema excretor ya que sus células hepáticas representan sistemas químicos complejos que ayudan a la función de todo el organismo, como la síntesis de proteínas, modificación de la composición de las grasas, transformación de las proteínas y grasas en carbohidratos y de productos de desecho nitrogenados como la urea.

Resultado de imagen para Sistema excretor como regulador

Sistema excretor como regulador

Cuando hablamos de excreción, siempre pensamos en la eliminación de productos de desecho. Esta sin embargo, es sólo una de sus funciones. La excreción es además, un sistema regulador del medio interno; es decir, determina la cantidad de agua y de sales que hay en el organismo en cada momento, y expulsa el exceso de ellas de modo que se mantenga constante la composición química y el volumen del medio interno (homeostasis). Así es como los organismos vivos aseguran su supervivencia frente a las variaciones ambientales.

Se puede decir, que la excreción llevada a cabo por los aparatos excretores implica varios procesos:

  1. – La excreción de los productos de desecho del metabolismo celular.
  2. – La osmorregulación o regulación de la presión osmótica.
  3. – La ionoregulación o regulación de los iones del medio interno.
ORGANOS IMPLICADOS EN LA EXCRECIÓN EN LOS VERTEBRADOS
Productos de desecho Origen del producto Órgano productor Órgano de excreción Medio excretor
Urea Por la degradación de aminoácidos Hígado Riñones Orina
Ácido úrico Por la degradación de purinas Hígado Hígado Orina
Pigmentos biliares Por la degradación dehemoglobina Hígado A. digestivo Heces
Agua Respiración celular Conjunto de células del organismo Riñones Piel
Pulmones Orina Sudor Vapor de agua CO2
Respiración celular Conjunto de células del organismo Pulmones Aire espirado

Sistema o aparato circulatorio

El cuerpo humano es recorrido interiormente, desde la punta de los pies hasta la cabeza, por un líquido rojizo y espeso llamado sangre. La sangre hace este recorrido a través de un sistema de verdaderas «cañerías», de distinto grosor, que se comunican por todo el cuerpo. La fuerza que necesita la sangre para circular se la entrega un motor que está ubicado casi en el centro del pecho: el corazón, que es una bomba que funciona sin parar un solo segundo. Estos elementos, junto a otros que apoyan la labor sanguínea, conforman el Sistema o Aparato circulatorio El sistema o aparato circulatorio es el encargado de transportar, llevándolas en la sangre, las sustancias nutritivas y el oxígeno por todo el cuerpo, para que, finalmente, estas sustancias lleguen a las células. También tiene la misión de transportar ciertas sustancias de desecho desde las células hasta los pulmones o riñones, para luego ser eliminadas del cuerpo. El sistema o aparato circulatorio está formado, entonces, por la sangre, el corazón y los vasos sanguíneos.

La sangre

La sangre es una compleja mezcla de partículas sólidas que flotan en un líquido. Ese líquido, amarillento y transparente, se llama plasma, y las partículas sólidas que flotan en él son los llamados elementos figurados, que aparecen el dibujo a la derecha. Esta parte sólida es roja y está formada por glóbulos rojos, glóbulos blancos y plaquetas.

  1. Glóbulos rojos: Son células que le dan el color rojo a la sangre y, a la vez, llevan el oxígeno desde los pulmones a todas las células del cuerpo, y el anhídrido carbónico desde las células hacia los pulmones.
  2. Intercambio de oxígeno: Todas las células y tejidos del cuerpo necesitan recibir constantemente oxígeno para mantenerse vivos. Ese oxígeno lo extrae la sangre desde los pulmones (donde se acumula cuando inspiramos) y los glóbulos rojos lo distribuyen por todo el cuerpo. Al mismo tiempo, dejan el oxígeno y sacan de los tejidos el productos de desecho llamado anhídrido carbónico (o dióxido de carbono) para llevarlo a los pulmones y desde allí botarlo al exterior cuando expiramos.
  3. Glóbulos blancos: Son células que pueden alterar su forma para desplazarse fuera del torrente sanguíneo y capturar los microbios.
  4. Plaquetas: Son partes de células que intervienen en la coagulación de la sangre

La cantidad de sangre en el cuerpo debe mantenerse constante para que ésta realice su tarea con eficacia. Como las venas, arterias y capilares están por todo el cuerpo, también están expuestas a los accidentes que provocan sangramiento. Cuando la cantidad de sangre que sale por alguna herida es muy grande, hablamos de una hemorragia. En esos casos, como en las operaciones donde se requiere restablecer la cantidad de sangre, se recurre a las transfusiones, que consisten en inyectarle sangre a los heridos o pacientes directamente al organismo. Esa sangre está guardada en refrigeración y en bolsas como la que vemos a la derecha

Imagen relacionada

El corazón

Es un órgano o bomba muscular hueca, del tamaño de un puño. Se aloja en el centro del tórax. Su única función es bombear la sangre hacia todo el cuerpo. Interiormente, el corazón está dividido en cuatro cavidades: las superiores se llaman aurículas, y las inferiores, ventrículos. La aurícula y el ventrículo derechos están separados de la aurícula y ventrículo izquierdos por una membrana llamada tabique. Las aurículas se comunican con sus respectivos ventrículos por medio de las válvulas.

Vasos sanguíneos

Son las arterias, venas y capilares; es decir, los conductos por donde circula la sangre.

 

  1. Arterias: Son vasos de paredes gruesas. Nacen de los ventrículos y llevan sangre desde el corazón al resto del cuerpo. Del ventrículo izquierdo nace la arteria aorta, que se ramifica en dos coronarias, y del derecho nace la pulmonar.
  2. Venas: Son vasos de paredes delgadas. Nacen en las aurículas y llevan sangre del cuerpo hacia el corazón.
  3. Capilares: Son vasos muy finos y de paredes muy delgadas, que unen venas con arterias. Su única función es la de favorecer el intercambio gaseoso.

Trabajo del corazón y recorrido de la sangre

El corazón está trabajando desde que comienza la vida en el vientre materno, y lo sigue haciendo por mucho tiempo más, hasta el último día. Para que bombee sangre hacia todo el cuerpo, el corazón debe contraerse y relajarse rítmicamente. Los movimientos de contracción se llaman movimientos sistólicos, y los de relajación, movimientos diastólicos. La sangre sale del corazón a través de las arterias y se dirige hacia los pulmones. Allí recoge el oxígeno y regresa al corazón a través de las venas. El corazón la bombea hacia el resto del cuerpo, para llegar otra vez hasta él cargada de anhídrido carbónico y, así, ir nuevamente a los pulmones y volver a comenzar el ciclo.

Resultado de imagen para sistema endocrino

Sistema endocrino

El sistema endocrino está formado por una serie de glándulas que liberan un tipo de sustancias llamadas hormonas; es decir, es el sistema de las glándulas de secreción interna o glándulas endocrinas. Una hormona es una sustancia química que se sintetiza en una glándula de secreción interna y ejerce algún tipo de efecto fisiológico sobre otras células hasta las que llega por vía sanguínea. Las hormonas actúan como mensajeros químicos y sólo ejercerán su acción sobre aquellas células que posean en sus membranas los receptores específicos (son las células diana o blanco). Las glándulas endocrinas más importantes son: la epífisis o pineal, el hipotálamo, la hipófisis, la tiroides, las paratiroides, el páncreas, las suprarrenales, los ovarios, los testículos.

Mecanismos bioquímicos de acción hormonal

En el organismo humano existen las Células diana, también llamadas células blanco, células receptoras o células efectoras, poseen receptores específicos para las hormonas en su superficie o en el interior. Cuando la hormona, transportada por la sangre, llega a la célula diana y hace contacto con el receptor «como una llave con una cerradura», la célula es impulsada a realizar una acción específica según el tipo de hormona de que se trate:

  • o Las hormonas esteroideas, gracias a su naturaleza lipídica, atraviesan fácilmente las membranas de las células diana o células blanco, y se unen a las moléculas receptoras de tipo proteico, que se encuentran en el citoplasma.

De esta manera llegan al núcleo, donde parece que son capaces de hacer cesar la inhibición a que están sometidos algunos genes y permitir que sean transcritos. Las moléculas de ARNm originadas se encargan de dirigir en el citoplasma la síntesis de unidades proteicas, que son las que producirán los efectos fisiológicos hormonales. o Las hormonas proteicas, sin embargo, son moléculas de gran tamaño que no pueden entrar en el interior de las células blanco, por lo que se unen a «moléculas receptoras» que hay en la superficie de sus membranas plasmáticas, provocando la formación de un segundo mensajero, el AMPc, que sería el que induciría los cambios pertinentes en la célula al activar a una serie de enzimas que producirán el efecto metabólico deseado.

Imagen relacionada

Control hormonal

La producción de hormonas está regulado en muchos casos por un sistema de retroalimentación o feed-back negativo, que hace que el exceso de una hormona vaya seguido de una disminución en su producción. Se puede considerar el hipotálamo, como el centro nervioso «director» y controlador de todas las secreciones endocrinas. El hipotálamo segrega neurohormonas que son conducidas a la hipófisis. Estas neurohormonas estimulan a la hipófisis para la secreción de hormonas trópicas (tireotropa, corticotropa, gonadotropa). Estas hormonas son transportadas a la sangre para estimular a las glándulas correspondientes (tiroides, corteza suprarrenal y gónadas) y serán éstas las que segreguen diversos tipos de hormonas (tiroxina, corticosteroides y hormonas sexuales, respectivamente ), que además de actuar en el cuerpo, retroalimentan la hipófisis y el hipotálamo para inhibir su actividad y equilibran las secreciones respectivas de estos dos órganos y de la glándula destinataria. Los órganos endocrinos también se denominan glándulas sin conducto o glándulas endocrinas, debido a que sus secreciones se liberan directamente en el torrente sanguíneo, mientras que las glándulas exocrinas liberan sus secreciones sobre la superficie interna o externa de los tejidos cutáneos, la mucosa del estómago o el revestimiento de los conductos pancreáticos. Las hormonas secretadas por las glándulas endocrinas regulan el crecimiento, desarrollo y las funciones de muchos tejidos, y coordinan los procesos metabólicos del organismo. Los tejidos que producen hormonas se pueden clasificar en tres grupos: glándulas endocrinas, cuya función es la producción exclusiva de hormonas; glándulas endo-exocrinas, que producen también otro tipo de secreciones además de hormonas; y ciertos tejidos no glandulares, como el tejido nervioso del sistema nervioso autónomo, que produce sustancias parecidas a las hormonas.

Hipófisis

La hipófisis, está formada por tres lóbulos: el anterior, el intermedio, que en los primates sólo existe durante un corto periodo de la vida, y el posterior. Se localiza en la base del cerebro y se ha denominado la «glándula principal». Los lóbulos anterior y posterior de la hipófisis segregan hormonas diferentes.

Resultado de imagen para El lóbulo anterior o adenohipófisis
 El lóbulo anterior o adenohipófisis. Produce dos tipos de hormonas:

  • Hormonas trópicas; es decir, estimulantes, ya que estimulan a las glándulas correspondientes.
  • o TSH o tireotropa: regula la secreción de tiroxina por la tiroides
  • o ACTH o adrenocorticotropa:controla la secreción de las hormonas de las cápsulas suprarrenales.
  • o FSH o folículo estimulante: provoca la secreción de estrógenos por los ovarios y la maduración de espermatozoides en los testículos.
  • LH o luteotropina: estimula la secreción de progesterona por el cuerpo lúteo y de la testosterona por los testículos. Hormonas no trópicas, que actúan directamente sobre sus células blanco.
  • STH o somatotropina, conocida como «hormona del crecimiento», ya que es responsable del control del crecimiento de huesos y cartílagos.
  • PRL o prolactina: estimula la secreción de leche por las glándulas mamarias tras el parto.
  • El lóbulo medio segrega una hormona, la MSH o estimulante de los melonóforos, estimula la síntesis de melanina y su dispersión por la célula.
  • El lóbulo posterior o neurohipófisis, libera dos hormonas, la oxitocina y la vasopresina o ADH, que realmente son sintetizadas por el hipotálamo y se almacenan aquí.
  • Oxitocina: Actúa sobre los músculos del útero, estimulando las contracciones durante el parto. Facilita la salida de la leche como respuesta a la succión.
  • Vasopresina: Es una hormona antidiurética, favoreciendo la reabsorción de agua a través de las nefronas.

    El encéfalo

    Resultado de imagen para encefalo
    El hipotálamo, porción del cerebro de donde deriva la hipófisis, secreta una hormona antidiurética (que controla la excreción de agua) denominada vasopresina, que circula y se almacena en el lóbulo posterior de la hipófisis. La vasopresina controla la cantidad de agua excretada por los riñones e incrementa la presión sanguínea. El lóbulo posterior de la hipófisis también almacena una hormona fabricada por el hipotálamo llamada oxitocina. Esta hormona estimula las contracciones musculares, en especial del útero, y la excreción de leche por las glándulas mamarias. La secreción de tres de las hormonas de la hipófisis anterior está sujeta a control hipotalámico por los factores liberadores: la secreción de tirotropina está estimulada por el factor liberador de tirotropina (TRF), y la de hormona luteinizante, por la hormona liberadora de hormona luteinizante (LHRH). La dopamina elaborada por el hipotálamo suele inhibir la liberación de prolactina por la hipófisis anterior. Además, la liberación de la hormona de crecimiento se inhibe por la somatostatina, sintetizada también en el páncreas. Esto significa que el cerebro también funciona como una glándula.

    Glándulas suprarrenales

    Son dos pequeñas glándulas situadas sobre los riñones. Se distinguen en ellas dos zonas: la corteza en el exterior y la médula que ocupa la zona central.

    1. . Corteza: Formada por tres capas, cada una segrega diversas sustancias hormonales.
      • La capa más externa segrega los mineralocorticoides, que regulan el metabolismo de los iones. Entre ellos destaca la aldosterona, cuyas funciones más notables son facilitar la retención de agua y sodio, la eliminación de potasio y la elevación de la tensión arterial.
      • La capa intermedia elabora los glucocorticoides. El más importante es la cortisona,cuyas funciones fisiológicas principales consisten en la formación de glúcidos y grasas a partir de los aminoácidos de las proteinas, por lo que aumenta el catabolismo de proteinas. Disminuyen los linfocitos y eosinófilos. Aumenta la capacidad de resistencia al estrés.
      • La capa más interna, segrega andrógenocorticoides, que están íntimamente relacionados con los caracteres sexuales. Se segregan tanto hormonas femeninas como masculinas, que producen su efecto fundamentalmente antes de la pubertad para, luego, disminuir su secreción.

       

    2. . Médula: Elabora las hormonas, adrenalina y noradrenalina. Influyen sobre el metabolismo de los glúcidos, favoreciendo la glucógenolisis, con lo que el organismo puede disponer en ese momento de una mayor cantidad de glucosa; elevan la presión arterial, aceleran los latidos del corazón y aumentan la frecuencia respiratoria. Se denominan también «hormonas de la emoción» porque se producen abundantemente en situaciones de estrés, terror, ansiedad, etc, de modo que permiten salir airosos de estos estados. Sus funciones se pueden ver comparadamente en el siguiente cuadro:

    Adrenalina Noradrenalina

    Incremento de la fuerza y frecuencia de la contracción cardíaca Incremento de la fuerza y frecuencia de la contracción cardíaca

    Dilatación de los vasos coronarios Dilatación de los vasos coronarios
    Vasodilatación general Vasoconstricción general
    Incremento del gasto cardíaco Descenso del gasto cardíaco
    Incremento de la glucogenolisis Incremento de la glucogenolisis(en menor proporción)

    Tiroides

     

Resultado de imagen para tiroide

La tiroides es una glándula bilobulada situada en el cuello. Las hormonas tiroideas, la tiroxina y la triyodotironina aumentan el consumo de oxígeno y estimulan la tasa de actividad metabólica, regulan el crecimiento y la maduración de los tejidos del organismo y actúan sobre el estado de alerta físico y mental. La tiroides también secreta una hormona denominada calcitonina, que disminuye los niveles de calcio en la sangre e inhibe su reabsorción ósea.

Glándulas paratiroides

Las glándulas paratiroides se localizan en un área cercana o están inmersas en la glándula tiroides. La hormona paratiroidea o parathormona regula los niveles sanguíneos de calcio y fósforo y estimula la reabsorción de hueso.

Las gónadas

Las gónadas (testículos y ovarios) son glándulas mixtas que en su secreción externa producen gametos y en su secreción interna producen hormonas que ejercen su acción en los órganos que intervienen en la función reproductora. Cada gónada produce las hormonas propias de su sexo, pero también una pequeña cantidad de las del sexo contrario. El control se ejerce desde la hipófisis.

  1. Ovarios: Los ovarios son los órganos femeninos de la reproducción, o gónadas femeninas. Son estructuras pares con forma de almendra situadas a ambos lados del útero. Los folículos ováricos producen óvulos, o huevos, y también segregan un grupo de hormonas denominadas estrógenos, necesarias para el desarrollo de los órganos reproductores y de las características sexuales secundarias, como distribución de la grasa, amplitud de la pelvis, crecimiento de las mamas y vello púbico y axilar. La progesterona ejerce su acción principal sobre la mucosa uterina en el mantenimiento del embarazo. También actúa junto a los estrógenos favoreciendo el crecimiento y la elasticidad de la vagina. Los ovarios también elaboran una hormona llamada relaxina, que actúa sobre los ligamentos de la pelvis y el cuello del útero y provoca su relajación durante el parto, facilitando de esta forma el alumbramiento.
  2. Testículos: Las gónadas masculinas o testículos son cuerpos ovoideos pares que se encuentran suspendidos en el escroto. Las células de Leydig de los testículos producen una o más hormonas masculinas, denominadas andrógenos. La más importante es la testosterona, que estimula el desarrollo de los caracteres sexuales secundarios, influye sobre el crecimiento de la próstata y vesículas seminales, y estimula la actividad secretora de estas estructuras. Los testículos también contienen células que producen gametos masculinos o espermatozoides.

La mayor parte del páncreas está formado por tejido exocrino que libera enzimas en el duodeno. Hay grupos de células endocrinas, denominados islotes de Langerhans, distribuidos por todo el tejido que secretan insulina y glucagón. La insulina actúa sobre el metabolismo de los hidratos de carbono, proteínas y grasas, aumentando la tasa de utilización de la glucosa y favoreciendo la formación de proteínas y el almacenamiento de grasas. El glucagón aumenta de forma transitoria los niveles de azúcar en la sangre mediante la liberación de glucosa procedente del hígado.

Placenta

La placenta, un órgano formado durante el embarazo a partir de la membrana que rodea al feto, asume diversas funciones endocrinas de la hipófisis y de los ovarios que son importantes en el mantenimiento del embarazo. Secreta la hormona denominada gonadotropina coriónica (o gonadotrofina) , sustancia presente en la orina durante la gestación y que constituye la base de las pruebas de embarazo. La placenta produce progesterona y estrógenos, somatotropina coriónica (una hormona con algunas de las características de la hormona del crecimiento), lactógeno placentario y hormonas lactogénicas.

Otros órganos

Otros tejidos del organismo producen hormonas o sustancias similares. Los riñones secretan un agente denominado renina que activa la hormona angiotensina elaborada en el hígado. Esta hormona eleva a su vez la tensión arterial, y se cree que es provocada en gran parte por la estimulación de las glándulas suprarrenales. Los riñones también elaboran una hormona llamada eritropoyetina, que estimula la producción de glóbulos rojos por la médula ósea. El tracto gastrointestinal fabrica varias sustancias que regulan las funciones del aparato digestivo, como la gastrina del estómago, que estimula la secreción ácida, y la secretina y colescistoquinina del intestino delgado, que estimulan la secreción de enzimas y hormonas pancreáticas. La colecistoquinina provoca también la contracción de la vesícula biliar. En la década de 1980, se observó que el corazón también segregaba una hormona, llamada factor natriurético auricular, implicada en la regulación de la tensión arterial y del equilibrio hidroelectrolítico del organismo. La confusión sobre la definición funcional del sistema endocrino se debe al descubrimiento de que muchas hormonas típicas se observan en lugares donde no ejercen una actividad hormonal. La noradrenalina está presente en las terminaciones nerviosas, donde trasmite los impulsos nerviosos. Los componentes del sistema renina-angiotensina se han encontrado en el cerebro, donde se desconocen sus funciones. Los péptidos intestinales gastrina, colecistoquinina, péptido intestinal vasoactivo (VIP) y el péptido inhibidor gástrico (GIP) se han localizado también en el cerebro. Las endorfinas están presentes en el intestino, y la hormona del crecimiento aparece en las células de los islotes de Langerhans. En el páncreas, la hormona del crecimiento parece actuar de forma local inhibiendo la liberación de insulina y glucagón a partir de las células endocrinas.

Metabolismo hormonal

Las hormonas conocidas pertenecen a tres grupos químicos: proteínas, esteroides y aminas. Aquellas que pertenecen al grupo de las proteínas o polipéptidos incluyen las hormonas producidas por la hipófisis anterior, paratiroides, placenta y páncreas. En el grupo de esteroides se encuentran las hormonas de la corteza suprarrenal y las gónadas.

  • Las aminas son producidas por la médula suprarrenal y la tiroides.
  • La síntesis de hormonas tiene lugar en el interior de las células y, en la mayoría de los casos, el producto se almacena en su interior hasta que es liberado en la sangre. Sin embargo, la tiroides y los ovarios contienen zonas especiales para el almacenamiento de hormonas.
  • La liberación de las hormonas depende de los niveles en sangre de otras hormonas y de ciertos productos metabólicos bajo influencia hormonal, así como de la estimulación nerviosa.
  • La producción de las hormonas de la hipófisis anterior se inhibe cuando las producidas por la glándula diana (target) particular, la corteza suprarrenal, la tiroides o las gónadas circulan en la sangre. Por ejemplo, cuando hay una cierta cantidad de hormona tiroidea en el torrente sanguíneo la hipófisis interrumpe la producción de hormona estimulante de la tiroides hasta que el nivel de hormona tiroidea descienda. Por lo tanto, los niveles de hormonas circulantes se mantienen en un equilibrio constante.
  • Este mecanismo, que se conoce como homeostasis o realimentación negativa, es similar al sistema de activación de un termostato por la temperatura de una habitación para encender o apagar una caldera.
  • La administración prolongada procedente del exterior de hormonas adrenocorticales, tiroideas o sexuales interrumpe casi por completo la producción de las correspondientes hormonas estimulantes de la hipófisis, y provoca la atrofia temporal de las glándulas diana. Por el contrario, si la producción de las glándulas diana es muy inferior al nivel normal, la producción continua de hormona estimulante por la hipófisis produce una hipertrofia de la glándula, como en el bocio por déficit de yodo.
  • La liberación de hormonas está regulada también por la cantidad de sustancias circulantes en sangre, cuya presencia o utilización queda bajo control hormonal.
  • Los altos niveles de glucosa en la sangre estimulan la producción y liberación de insulina mientras que los niveles reducidos estimulan a las glándulas suprarrenales para producir adrenalina y glucagón; así se mantiene el equilibrio en el metabolismo de los hidratos de carbono. De igual manera, un déficit de calcio en la sangre estimula la secreción de hormona paratiroidea, mientras que los niveles elevados estimulan la liberación de calcitonina por la tiroides.
  • La función endocrina está regulada también por el sistema nervioso, como lo demuestra la respuesta suprarrenal al estrés.
  • Los distintos órganos endocrinos están sometidos a diversas formas de control nervioso. La médula suprarrenal y la hipófisis posterior son glándulas con rica inervación y controladas de modo directo por el sistema nervioso. Sin embargo, la corteza suprarrenal, la tiroides y las gónadas, aunque responden a varios estímulos nerviosos, carecen de inervación específica y mantienen su función cuando se trasplantan a otras partes del organismo. La hipófisis anterior tiene inervación escasa, pero no puede funcionar si se trasplanta.
  • Se desconoce la forma en que las hormonas ejercen muchos de sus efectos metabólicos y morfológicos. Sin embargo, se piensa que los efectos sobre la función de las células se deben a su acción sobre las membranas celulares o enzimas, mediante la regulación de la expresión de los genes o mediante el control de la liberación de iones u otras moléculas pequeñas. Aunque en apariencia no se consumen o se modifican en el proceso metabólico, las hormonas pueden ser destruidas en gran parte por degradación química. Los productos hormonales finales se excretan con rapidez y se encuentran en la orina en grandes cantidades, y también en las heces y el sudor.

Ciclos endocrinos

El sistema endocrino ejerce un efecto regulador sobre los ciclos de la reproducción, incluyendo el desarrollo de las gónadas, el periodo de madurez funcional y su posterior envejecimiento, así como el ciclo menstrual y el periodo de gestación. El patrón cíclico del estro, que es el periodo durante el cual es posible el apareamiento fértil en los animales, está regulado también por hormonas. La pubertad, la época de maduración sexual, está determinada por un aumento de la secreción de hormonas hipofisarias estimuladoras de las gónadas o gonadotropinas, que producen la maduración de los testículos u ovarios y aumentan la secreción de hormonas sexuales. A su vez, las hormonas sexuales actúan sobre los órganos sexuales auxiliares y el desarrollo sexual general.

Pubertad femenina.

En la mujer, la pubertad está asociada con el inicio de la menstruación y de la ovulación. La ovulación, que es la liberación de un óvulo de un folículo ovárico, se produce aproximadamente cada 28 días, entre el día 10 y el 14 del ciclo menstrual en la mujer. La primera parte del ciclo está marcada por el periodo menstrual, que abarca un promedio de tres a cinco días, y por la maduración del folículo ovárico bajo la influencia de la hormona folículo estimulante procedente de la hipófisis. Después de la ovulación y bajo la influencia de otra hormona, la llamada luteinizante, el folículo vacío forma un cuerpo endocrino denominado cuerpo lúteo, que secreta progesterona, estrógenos, y es probable que durante el embarazo, relaxina. La progesterona y los estrógenos preparan la mucosa uterina para el embarazo. Si éste no se produce, el cuerpo lúteo involuciona, y la mucosa uterina, privada del estímulo hormonal, se desintegra y descama produciendo la hemorragia menstrual. El patrón rítmico de la menstruación está explicado por la relación recíproca inhibición-estimulación entre los estrógenos y las hormonas hipofisarias estimulantes de las gónadas. Si se produce el embarazo, la secreción placentaria de gonadotropinas, progesterona y estrógenos mantiene el cuerpo lúteo y la mucosa uterina, y prepara las mamas para la producción de leche o lactancia. La secreción de estrógenos y progesterona es elevada durante el embarazo y alcanza su nivel máximo justo antes del nacimiento. La lactancia se produce poco después del parto, presumiblemente como resultado de los cambios en el equilibrio hormonal tras la separación de la placenta. Con el envejecimiento progresivo de los ovarios, y el descenso de su producción de estrógenos, tiene lugar la menopausia. En este periodo la secreción de gonadotropinas aumenta como resultado de la ausencia de inhibición estrogénica. En el hombre el periodo correspondiente está marcado por una reducción gradual de la secreción de andrógenos.

Trastornos de la función endocrina

Las alteraciones en la producción endocrina se pueden clasificar como de hiperfunción (exceso de actividad) o hipofunción (actividad insuficiente). La hiperfunción de una glándula puede estar causada por un tumor productor de hormonas que es benigno o, con menos frecuencia, maligno. La hipofunción puede deberse a defectos congénitos, cáncer, lesiones inflamatorias, degeneración, trastornos de la hipófisis que afectan a los órganos diana, traumatismos, o, en el caso de enfermedad tiroidea, déficit de yodo. La hipofunción puede ser también resultado de la extirpación quirúrgica de una glándula o de la destrucción por radioterapia. Acromegalia o crecimiento desmesurado de partes del cuerpo. La hiperfunción de la hipófisis anterior con sobreproducción de hormona del crecimiento provoca en ocasiones gigantismo o acromegalia, o si se produce un exceso de producción de hormona estimulante de la corteza suprarrenal, puede resultar un grupo de síntomas conocidos como síndrome de Cushing que incluye hipertensión, debilidad, policitemia, estrías cutáneas purpúreas, y un tipo especial de obesidad. La deficiencia de la hipófisis anterior conduce a enanismo (si aparece al principio de la vida), ausencia de desarrollo sexual, debilidad, y en algunas ocasiones desnutrición grave. Una disminución de la actividad de la corteza suprarrenal origina la enfermedad de Addison, mientras que la actividad excesiva puede provocar el síndrome de Cushing u originar virilismo, aparición de caracteres sexuales secundarios masculinos en mujeres y niños. Las alteraciones de la función de las gónadas afectan sobre todo al desarrollo de los caracteres sexuales primarios y secundarios. Las deficiencias tiroideas producen cretinismo y enanismo en el lactante, y mixedema, caracterizado por rasgos toscos y disminución de las reacciones físicas y mentales, en el adulto. La hiperfunción tiroidea (enfermedad de Graves, bocio tóxico) se caracteriza por abultamiento de los ojos, temblor y sudoración, aumento de la frecuencia del pulso, palpitaciones cardiacas e irritabilidad nerviosa. La diabetes insípida se debe al déficit de hormona antidiurética, y la diabetes mellitus, a un defecto en la producción de la hormona pancreática insulina, o puede ser consecuencia de una respuesta inadecuada del organismo.

Sistema nervioso

  • El sistema nervioso, uno del más complejo e importante de nuestro organismo, es un conjunto de órganos y una red de tejidos nerviosos cuya unidad básica son las neuronas. Las neuronas se disponen dentro de una armazón con células no nerviosas, las que en conjunto se llaman neuroglia.
  • El sistema nervioso tiene tres funciones básicas: la sensitiva, la integradora y la motora.
  • La función sensitiva le permite reaccionar ante estímulos provenientes tanto desde el interior del organismo como desde el medio exterior.
  • Luego, la información sensitiva se analiza, se almacenan algunos aspectos de ésta y toma decisiones con respecto a la conducta a seguir; esta es la función integradora.
  • Por último, puede responder a los estímulos iniciando contracciones musculares o secreciones glandulares; es la función motora.

Para entender su funcionalidad, el sistema nervioso como un todo puede subdivirse en dos sistemas:

Resultado de imagen para Esquema general del sistema nervioso.

Esquema general del sistema nervioso.

El sistema nervioso central (SNC) y el sistema nervioso periférico (SNP). El SNC está conectado con los receptores sensitivos, los músculos y las glándulas de las zonas periféricas del organismo a través del SNP. Este último está formado por los nervios craneales, que nacen en el encéfalo y los nervios raquídeos o medulares, que nacen en la médula espinal. Una parte de estos nervios lleva impulsos nerviosos hasta el SNC, mientras que otras partes transportan los impulsos que salen del SNC. El componente aferente del SNP son células nerviosas llamadas neuronas sensitivaso aferentes (ad = hacia; ferre = llevar). Conducen los impulsos nerviosos desde los receptores sensitivos de varias partes del organismo hasta el SNC y acaban en el interior de éste. El componente eferente son células nerviosas llamadas neuronas motoras o eferentes ( ex = fuera de; ferre = llevar). Estas se originan en el interior del SNC y conducen los impulsos nerviosos desde éste a los músculos y las glándulas.

Clasificación anatómica del sistema nervioso

Está formado por dos divisiones principales:

  • Sistema nervioso central
  • Sistema nervioso periférico

El sistema nervioso central está formado por el encéfalo, que comprende el cerebro, cerebelo, la lámina cuadrigémina (con los tubérculos cuadrigémina) y el tronco del encéfalo o bulbo raquídeo, y por la médula espinal. Los tubérculos cuadrigéminos constituyen un centro de reflejos visuales. Los tubérculos son cuatro y se dividen en dos superiores y dos inferiores. En la región interior de dichos tubérculos se encuentra la glándula hipófisis, alojada en la «silla turca» del hueso esfenoides y que controla la actividad del organismo.

Funcionalmente, el sistema nervioso periférico se divide en:

  1. Sistema nervioso somático
  2. Sistema nervioso vegetativo o autónomo.
  3. El sistema nervioso somático está compuesto por:
  4. Nervios espinales, 31 pares de nervios que envían información sensorial (tacto, dolor) del tronco y las extremidades hacia el sistema nervioso central a través de la médula espinal.

También envían información de la posición y el estado de la musculatura y las articulaciones del tronco y las articulaciones para el control de lamusculatura esquelética.

  1. Nervios craneales, 12 pares de nervios que envían información sensorial procedente del cuello y la cabeza hacia el sistema nervioso central. Reciben órdenes motoras para el control de la musculatura esquelética del cuello y la cabeza.
  2. El sistema nervioso vegetativo o autónomo se compone de centros bulbares y medulares, así como de dos cadenas de 23 ganglios situados a ambos lados de la médula espinal, y preside las funciones de respiración, circulación, secreciones y en general todas las propias de la vida de nutrición. Los órganos inervados funcionan con entera independencia de nuestra voluntad; por esto se les llama sistema autónomo. Atendiendo al origen y función de las fibras nerviosas el sistema nervioso autónomo se divide en dos grandes grupos:
  3. Sistema Nervioso Simpático: sus fibras se originan en la médula dorsolumbar y su función es descargar energía para satisfacer objetivos vitales.
  4. Sistema Nervioso Parasimpático: sus fibras nacen en los centros bulbares y sacro e interviene en los procesos de recuperación, se encarga del almacenamiento y administración de la energía.

Ambos sistemas tienen funciones antagónicas y complementarias.

Resultado de imagen para Neurona, ganglios, nervios conforman el tejido nervioso
Neurona, ganglios, nervios conforman el tejido nervioso

El nervio más importante del sistema parasimpático se llama neumogástrico y sale del bulbo raquídeo.

Tejido Nervioso

Los órganos que integran el Sistema Nervioso están formados fundamentalmente por el tejido nervioso cuyos elementos constitutivos son las neuronas y células gliales que dan origen a la sustancia gris formada por los cuerpos neuronales y el neuropilo, y la sustancia blanca, formada por las fibras nerviosas o axones y sus vainas. Desde un punto de vista funcional, la sustancia gris forma centros de procesamiento de la información y en la sustancia blanca se agrupan las vías de conducción aferentes y eferentes y las vías de comunicación de dichos centros entre sí. La información llega a los centros superiores desde la periferia, pasando por una serie de centros intermedios, y lo mismo sucede con las respuestas que desde los centros superiores llegan a la periferia atravesando un número variable de centros de procesamiento.

Neurona

La unidad anatómica y funcional del tejido nervioso es la neurona, célula altamente especializada cuyas propiedades de excitabilidad y conducción son la base de las funciones del sistema. Puede distinguirse en ella un soma o cuerpo celular en el que se hallan los diversos orgánulos citoplasmáticos: neurosomas (mitocondrias), aparato de Golgi, grumos de Nissi (ergatoplasma), neurofibrillas, etc. y un núcleo voluminoso. Del cuerpo celular arrancan dos tipos de prolongaciones, las dendritas y un axón. Las dendritas se ramifican en ramas de segundo y tercer orden, cuyo calibre disminuye a medida que se alejan del cuerpo neuronal. El axón es único y su calibre generalmente uniforme en toda su longitud, se ramifica sólo en la proximidad de su terminación. Existe una gran variabilidad en cuanto al tamaño de las células nerviosas: los granos del cerebelo miden unas 5 u de diámetro, mientras que las grandes pirámides de la corteza cerebral miden unas 130 u.

Nervios

Sus elementos constitutivos fundamentales son los axones, que se hallan rodeados de tejido conectivo. Los axones conducen impulsos nerviosos desde o hacia el sistema nervioso central. En el SNC pueden distinguirse neuronas motoras, cuyos axones lo abandonan para incorporarse a los nervios y alcanzar a los efectores (glándulas, músculos, otras neuronas) y neuronas sensitivas, ubicadas en los ganglios espinales, a las que llegan los impulsos de la periferia, que luego continúan para ingresar en el SNC.

Cada nervio tiene una labor Según esta distinción, se denomina a los axones: motores y sensitivos. La mayoría de los nervios son mixtos, ya que poseen ambos tipos de axones.

Ganglio

Se denomina ganglio al conjunto de células nerviosas que se encuentran en el curso de los nervios, es, por lo tanto, masa de sustancia gris. Los ganglios del sistema neurovegetativo se dividen en cervicales, que son tres; dorsales, que son generalmente doce; lumbares o abdominales, que son cuatro pero pueden ser tres o cinco; simpático sacro, que son cuatro y a veces cinco. Interpretación gráfica de un entorno neuronal.

Células gliales

La células gliales (o glía) son células del sistema nervioso que se encargan principalmente de funcionar como soporte para las neuronas. Además, intervienen de forma activa en el procesamiento cerebral de la información. De forma estrellada y con numerosas prolongaciones ramificadas, estas células vienen a ser el «pegamento» del sistema nervioso, porque envuelven al resto de las estructuras del tejido (neuronas, dendritas, axones, capilares) mediante delgadas lengüetas que se interdigitan entre ellas, formando una cerrada trama (la neuroglia). Además, las glías proporcionan a las neuronas los nutrientes y el oxígeno que necesitan, separan a unas neuronas de otras, las protegen de patógenos o las eliminan cuando las neuronas mueren.

Neuroglia

Las neuronas del sistema nervioso central están sostenidas por algunas variedades de células no excitables que en conjunto se denominan neuroglia ( neuro = nervio; glia = pegamento). Estas células en general son más pequeñas que las neuronas y las superan en 5 a 10 veces en número (50 por ciento del volumen del encéfalo y la médula espinal). Hay cuatro tipos principales de células neurogliales, los astrocitos, los oligodendrocitos, la microglia y el epéndimo.

Las meninges

Todo el eje encefaloespinal se halla envuelto y defendido por tejido conectivo fibroso que forma las meninges: la duramadre, lapiamadre y la aracnoides. La duramadre es una cubierta gruesa y resistente que, a nivel del cráneo, está adherida a la tabla interna de la calota y a nivel medular está rodeada por el espacio epidural. Debajo de la duramadre se encuentra la aracnoides, estructurada por un tejido conectivo dispuesto en forma de una tela de araña. El conectivo se halla tapizado por el epitelio plano, que por el lado encefálico se ancla sobre la piamadre, la cual sólo se halla separada del tejido encefálico por una delgada membrana basal, que apoya sobre prolongaciones gliales. En la aracnoides circula el líquido cefalorraquídeo y se disponen los vasos sanguíneos encefálicos. La reacción a un pinchazo: un acto reflejo.

Acto reflejo y acto voluntario

Se denomina acto reflejo a toda impresión transformada en acción, sin la intervención de la voluntad ni de la conciencia. En él intervienen dos corrientes nerviosas: una sensitiva, que va del sentido que recibe la impresión al centro nervioso (médula espinal) y otra motora, que es respuesta a la primera, que va del centro nervioso a la glándula o músculo. Ejemplo: al recibir un pinchazo, la impresión dolorosa es recogida por los corpúsculos sensoriales de la piel y transmitida por los nervios táctiles al centro nervioso (médula espinal) en donde, sin darnos cuenta, se produce una corriente motora (respuesta) que va a los músculos de la piel y mueve la parte herida para apartarla del instrumento punzante.

Todo esto se hace sin intervención de la voluntad.

Los actos reflejos se producen con mucha frecuencia en nuestra vida diaria. El acto voluntario es idéntico al anterior, pero añade unas corrientes intermedias, o sea que, cuando la corriente sensitiva llega a la médula, en vez de producirse la corriente motora, prosigue la sensitiva hasta llegar al cerebro; allí nos damos cuenta de la sensación dolorosa y su causa. Es entonces cuando la voluntad establece una corriente motora (movimiento voluntario) y el miembro herido se aparta de la causa de la sensación dolorosa, o queda en suspenso dicha corriente y se siguen sufriendo los efectos dolorosos: todo depende de nosotros, de nuestro libre querer.

El cerebro y el sistema nervioso

Pero hay otra modalidad de acto voluntario cuando la corriente motora parte directamente del cerebro sin que haya llegado a él una corriente sensitiva, sino por una idea que allí mismo se ha formado y que induce a la voluntad a establecer la corriente motora necesaria para verificar el acto que se ha pensado.

Sistema o aparato reproductor femenino

La información genética que trasmite la madre a su hijo está contenida en elgameto femenino u óvulo. La producción de esta célula reproductiva pone en funcionamiento una serie de órganos sexuales que conforman el sistema reproductor femenino.

Los órganos sexuales se clasifican en internos y externos:

Los órganos internos están constituidos por:

Ovarios

Son dos órganos del tamaño de una almendra que se ubican en la cavidad abdominal de la mujer. Su función es producir un óvulo cada 28 días aproximadamente. Están situados dentro del cuerpo, en la región de la pelvis, uno a cada lado del útero. Los ovarios producen y liberan unas hormonas denominadas estrógenos y progesterona. Los estrógenos, producidos desde la pubertad, determinan cambios tales como: hombros angostos, voz aguda, caderas anchas, etc. Estos cambios son las características sexuales secundarias de la mujer. La progesterona, hormona que tiene como función aumentar la cantidad de vasos sanguíneos del endometrio uterino. Cuando se libera el óvulo, una vez que ha sido fecundado, las paredes del útero están capacitadas para recibirlo y alojarlo durante su proceso de posterior desarrollo.

Trompas de Falopio

Forman un arco cerca del ovario son pequeños tubos que entran en el útero (uno derecho y otro izquierdo). Son dos conductos que se originan cerca de cada ovario y que se extienden hasta el útero. La función de las trompas, también llamadas oviductos, es conducir el óvulo desde el ovario hasta el útero. La fecundación ocurre en las trompas de Falopio.

Útero

Es un órgano musculoso y hueco del tamaño y forma de una pera invertida, y está ubicado en la parte inferior del vientre. Lo conforman tres capas: una interna o endometrio, que cada mes se enriquece con una cantidad extra de vasos sanguíneos necesarios para la nutrición del nuevo ser; otra intermedia formada por músculos lisos; y la capa externa constituida por tejido elástico. El útero o matriz, es una cavidad que tiene cinco centímetros de longitud. Es muscular, tiene un enorme poder de crecimiento y de contracción, pues es capaz de sacar un feto al exterior, en el momento del parto.

Vagina

Es un tubo muscular elástico que comunica el útero con el exterior. Se ubica en la pelvis menor, entre la uretra y el recto. Termina en un orificio alrededor del cual hay unos repliegues de la piel llamados labios mayores. Es un conducto que une a la vulva externa con los órganos sexuales internos. Estos se encuentran dentro de la cabida abdominal que esta situada entre los huesos de la cadera (pelvis).

Los órganos externos están formados por:

Vulva

Sistema reproductor femenino. La vulva se puede observar al separar los muslos de la mujer. Esta rodeada de dos dobleces de piel: uno exterior, los labios mayores y uno exterior los labios menores. En la mujer púber los labios mayores tienen pelos.

Clítoris

Pequeño órgano parecido al pene. Está provisto de terminaciones nerviosas y puede entrar en erección.

Meato

Por debajo del clítoris se encuentra el meato urinario, que es el orificio de la porción final de las vías urinaria. Es el lugar donde se emite la orina al exterior.

Himen

Por la abertura de la vagina, y situado entre la entrada de ésta y el vestíbulo de ella, se encuentra en la mujer virgen una membrana no perforada llamada himen. El himen es una delgada membrana que se extiende por la abertura de la vagina. Esta membrana tiene una o más abertura por las cuales sale el flujo menstrual y la tradición dice que en el momento de la primera penetración del órgano masculino, dicha membrana se rompe, haciendo que sangre un poco, por lo tanto era considerado una prueba de virginidad. Actualmente se sabe que no necesariamente esta membrana se rompe en la primera relación sexual ya que puede haber membranas más elásticas que otras y además puede ser rota por otras circunstancias: utilización de tampones del diámetro no adecuado a los orificios del himen, etc.

Ciclo menstrual femenino

En el sistema reproductor femenino ocurren una serie de cambios que se repiten aproximadamente cada 28 días. Las modificaciones que experimentan el útero y los ovarios constituyen el ciclo menstrual femenino. En este ciclo de producción del gameto femenino y las hormonas sexuales femeninas se distinguen dos fases: la maduración del óvulo y secreción de estrógenos, y la ovulación y secreción de progesterona.

  1. . Maduración del óvulo y secreción de estrógenos Esta fase comprende la primera mitad del ciclo, es decir dura 14 días aproximadamente. Los acontecimientos que ocurren en esta fase determinan que madure un óvulo en uno de los dos ovarios, el cual será liberado aproximadamente el día 14. Este óvulo está rodeado por células que lo nutren y protegen formando un folículo. Paralelamente, el ovario produce y segrega estrógenos, que comenzarán a engrosar el endometrio del útero. Las paredes del útero tendrán así la capacidad de recibir al óvulo para su posterior desarrollo, en el caso de que sea fecundado. La maduración del gameto femenino y la producción de estrógenos en los ovarios está regulada por la hormona folículo estimulante, que se origina en la adenohipófisis.
  2. . Ovulación y secreción de progesterona El día 14, aproximadamente, el gameto femenino u óvulo está en condiciones de ser liberado desde el ovario.
  3. OVULACIÓN es el proceso de liberación del óvulo maduro desde el ovario. Luego de la ovulación, el folículo se transforma en una estructura del ovario llamada cuerpo lúteo, que comenzará a producir la hormona progesterona, la cual continuará los cambios iniciados por los estrógenos en el endometrio uterino. El óvulo liberado ingresa a una de las trompas de Falopio para dirigirse hacia el útero. Si el óvulo es fecundado, se formará el cigoto, que se implantará en el endometrio uterino y comenzará su desarrollo. De lo contrario, el endometrio, con todos los vasos sanguíneos que han aumentado en cantidad y tamaño, se desintegrará produciéndose la menstruación.
  4. MENSTRUACIÓN es el flujo sanguíneo liberado al exterior a través de la vagina y que contiene restos del endometrio, vasos sanguíneos y el óvulo no fecundado.

La menstruación es un proceso natural durante el cual la mujer debe procurar realizar todas sus actividades habituales. Suele durar de tres a cinco días. El primer día de la menstruación es el primer día del ciclo menstrual femenino.

CARACTERÍSTICAS SEXUALES SECUNDARIAS DE LA MUJER

. La acción hormonal provoca algunos cambios notorios en el cuerpo de la mujer joven. Estos son: Transformación de la estructura del esqueleto. En la niña, los cambios comienzan unos dos años antes que en el hombre, es decir, alrededor de los 11 años. En ella se produce un aumento importante de la estatura, debido al crecimiento de los huesos y un ensanchamiento de las caderas. Esta última transformación es importante para la función reproductora, pues estos huesos sostendrán al feto dentro del vientre materno. Junto con la nueva contextura de las caderas y de la pelvis se forma la cintura, que le otorga finura a la silueta femenina. Desarrollo de las glándulas mamarias. El desarrollo de las glándulas mamarias o mamas se debe a la acción de los estrógenos. Están formadas por tejido adiposo, y por otro tejido especializado en la producción de leche, la cual se forma con las sustancias nutritivas de la dieta alimenticia, junto con el efecto de una hormona llamada prolactina que se activa después del parto. Un conjunto de músculos presentes en el tórax son los encargados de sostener el peso de las mamas con el fin de mantenerlas en su lugar. Es recomendable realizar ciertas rutinas de ejercicios para vigorizar estos músculos. Cambios en la piel y en la distribución del vello. Como en el varón, la acción de las hormonas sexuales provoca cambios en la textura de la piel de la mujer. Ésta se vuelve más lisa y aparecen las molestas «espinillas» por el aumento en la actividad de las glándulas sebáceas. Las alteraciones cutáneas desaparecen con el tiempo. Además, aparecen vellos, principalmente en la zona púbica y axilar.

Sistema o aparato reproductor masculino

En la especie humana, el hombre produce los gametos masculinos o espermatozoides. Estas células trasmiten al nuevo ser la información genética aportada por el padre. Las estructuras más importantes del sistema reproductor masculino son los testículos, el epidídimo, los conductos deferentes, la uretra, las vesículas seminales, la próstata y el pene.

Testículos

Son dos órganos cuya función es la producción de espermatozoides. Se encuentran suspendidos en un saco externo formado por la piel, denominado escroto. La función del escroto es mantener a los testículos en un medio más frío que el del interior de la cavidad abdominal. Para que los espermatozoides se produzcan normalmente se requiere de una temperatura 30°C menor que la temperatura corporal (37°C). En el interior de los testículos existen unos 250 lóbulos o compartimentos, que contienen unos delgados tubos muy enrollados y apretados llamados túbulos seminíferos. Cada túbulo seminífero tiene un diámetro extremadamente pequeño y mide aproximadamente unos 80 centímetros de longitud. Son las estructuras específicas en que se producen los espermatozoides dentro del testículo.

  1. Funcionamiento de los testículos. En el interior de los testículos y más exactamente en los túbulos seminíferos, se produce lahormona testosterona. (Ver: Hormonas sexuales) Esta hormona determina las denominadas características sexuales secundarias, y que son:
  2. Crecimiento de la estructura del esqueleto. Es común observar en los varones, alrededor de los 12 años, un aumento importante de su estatura. Esto se debe al crecimiento de los huesos por el aumento del tejido óseo que provocan la acción de la hormona del crecimiento o somatotrofina y la testosterona. Se produce también un ensanchamiento de los hombros que dan la apariencia de un cuerpo más robusto que el de la mujer. Los huesos del cráneo también crecen y provocan el crecimiento de la nariz, de la mandíbula y de la frente; la cara, en su conjunto, se ve más alargada en comparación con la redondeada que tenía el niño.
  3. Desarrollo de la musculatura. El varón experimenta un aumento importante de su volumen corporal, debido al desarrollo de los músculos, más notorio en la zona pectoral y abdominal, en los bíceps y en las piernas.
  4. Cambios en el tono de la voz. La voz cambia de un tono agudo a otro más grave, por la maduración de la laringe y de las cuerdas vocales. En este período de cambio, es frecuente que aparezcan los conocidos «gallitos», porque el tono de la voz sube y baja involuntariamente mientras se está hablando. El desarrollo de la laringe es más notorio en los hombres porque se produce además un abultamiento en la zona delantera del cuello, que da origen a la llamada, comúnmente, «manzana de Adán», tan característica en los varones.
  5. Cambios en la piel y en la distribución del vello.La piel del adolescente varón va engrosando, aumenta la actividad de las glándulas sebáceas y, como consecuencia, aparecen las llamadas «espinillas» y el característico acné juvenil. Estas erupciones desaparecerán cuando el cuerpo se adapte a los cambios hormonales, originados por una mayor producción de testosterona. Aparece también abundante vellosidad en zonas del cuerpo del varón donde antes no existía: el vello facial (bigote y barba) que da la oportunidad de comenzar a afeitarse; vello en el resto del cuerpo, especialmente en las piernas, región pectoral y, más abundante, en las axilas y en la zona púbica.
  6. La extirpación de los testículos en la pubertad hace que no se desarrollen ninguna de las características sexuales secundarias en el varón (Eunucoidismo), ya que se extrae la fuente de testosterona del individuo, además no existe la producción de espermios por lo que el individuo queda infértil.
  7. Regulación hormonal. El funcionamiento de los testículos está controlado por una glándula cuyo nombre es adenohipófisis. Esta glándula ubicada en la base del cerebro, produce dos hormonas: la hormona folículo estimulante (HFE), que regula la producción de espermatozoides y la hormona luteinizante (HL) que controla la producción de la testosterona.

La producción de espermatozoides en el hombre está regulada por la acción de hormonas, que se mantiene constante desde la pubertad hasta la edad adulta.

Epidídimo

Es el órgano conformado por un tubo enrollado cuya longitud aproximada es de 7 centímetros. Se encuentra unido a los testículos por detrás de ellos y su función es e1 almacenar temporalmente los espermatozoides producidos en los tubos seminíferos para permitirles que adquieran movilidad. Este proceso se conoce con el nombre de capacitación, y requiere que los espermatozoides permanezcan 18 horas en el epidídimo, para completarse sólo cuando éstos ingresan al sistema reproductor femenino, donde puede ocurrir la fecundación del óvulo.

Conductos deferentes

Éstos son la prolongación del tubo contenido en el epidídimo. Su función es almacenar los gametos masculinos y transportarlos desde el testículo hasta otra porción tubular denominada uretra.

Uretra

Es un conducto que transporta los espermatozoides desde los conductos deferentes hasta el pene, para permitir su excreción. La uretra es también el conducto por el que se elimina la orina.

Vesículas seminales

Son dos glándulas que vierten a los conductos deferentes el semen, líquido viscoso en el que flotan los espermatozoides. El semen contiene agua y nutrientes como la fructosa, un tipo de azúcar que sirve de fuente energética para posibilitar el movimiento de los espermatozoides en su camino hacia el óvulo femenino.

Próstata

Se denomina así a una glándula que segrega sustancias específicas, las cuales, al mezclarse con el semen producido por las vesículas seminales, favorece la supervivencia de los espermatozoides una vez que ingresan al sistema reproductor femenino y ocurre la fecundación del óvulo.

Pene

El pene es el órgano copulador por el cual los espermatozoides son depositados en la vagina. Está formado por un tejido esponjoso que al llenarse de sangre se separa del cuerpo en un proceso denominado erección. El pene erecto tiene la posibilidad reproductiva de introducir los espermatozoides del varón dentro del sistema reproductor femenino, función que se realiza durante el acto sexual o cópula. En la capacidad de introducir espermas no tiene ninguna influencia el tamaño del pene. Respecto a este punto, no existe ninguna encuesta científica ni estudio que indique algún tamaño como promedio ni menos como ideal, habiendo algunos de pocos centímetros hasta otros de quince o dieciséis. No existe tampoco ninguna correlación entre el tamaño del pene en estado de flaccidez y su estado de erección. Esto significa que un pene pequeño puede alcanzar, proporcionalmente, mayor longitud que otro de más tamaño.

Sistema inmune o inmunológico

Nuestro cuerpo está compuesto de distintos órganos, cada uno con funciones especiales.

Resultado de imagen para Sistema inmune o inmunológico
Ubicación del sistema inmune Por ejemplo, el corazón, las arterias y las venas son parte del sistema cardiovascular que tiene la función de bombear la sangre a todo el cuerpo. El estómago, hígado, páncreas e intestinos son parte del sistema digestivo que tiene la función de digerir alimentos, absorberlos en el cuerpo, y transformarlos en energía. La nariz, garganta y pulmones son parte del sistema respiratorio que tiene la función de llevar oxígeno a la sangre y al cuerpo. Como estos órganos y sistemas, el Sistema Inmunológico tiene una variedad de tejidos y órganos, cada uno contribuye en alguna manera a las funciones especializadas del Sistema Inmunológico.

Funciones del Sistema Inmunológico:

El Sistema Inmunológico tiene 2 principales funciones:

  1. ) reconocer sustancias (también llamadas antígenos) extrañas al cuerpo y
  2. ) reaccionar en contra de ellas. Estas sustancias (o antígenos) pueden ser micro-organismos que causan enfermedades infecciosas, órganos o tejidos trasplantados de otro individuo, o hasta tumores en nuestro cuerpo.

El adecuado funcionamiento del Sistema Inmunológico provee protección contra enfermedades infecciosas, es responsable de rechazar órganos trasplantados, y puede proteger a una persona del cáncer. Una de las funciones más importantes del Sistema Inmunológico es la protección contra enfermedades infecciosas. El cuerpo está en constante reto por una gran variedad de micro-organismos infecciosos como bacterias, virus y hongos. Estos micro-organismos pueden provocar una variedad de infecciones, algunas relativamente comunes y normalmente no muy serias, y otras menos comunes y más serias. Por ejemplo, una persona en promedio tiene algunas infecciones de «gripe» cada año provocadas por una gran variedad de virus respiratorios. Otros virus pueden provocar infecciones más serias en el hígado (hepatitis) o infecciones en el cerebro (encefalitis). Las infecciones por bacterias más comunes son entre otras, «estreptococo» en la garganta, infecciones de la piel (impétigo) e infecciones en el oído (otitis). En algunas ocasiones una infección por una bacteria puede ser muy seria como cuando afecta la cubierta del cerebro (meningitis) o cuando afecta los huesos (osteomielitis). Cualquiera que sea la infección, ya sea causada por una bacteria, virus u hongo, si es relativamente inofensiva o relativamente seria, si es en la piel, en la garganta, en los pulmones o en el cerebro, el Sistema Inmunológico es el responsable de defender a esta persona contra el micro-organismo invasor. Un Sistema Inmunológico normal brinda la habilidad de matar al micro-organismo invasor, limitar el área afectada y por último brindar la recuperación. Un Sistema Inmunológico anormal no puede matar a los micro-organismos. La infección se puede distribuir y si no es tratado puede morir. Por lo tanto pacientes con un Sistema Inmunológico defectuoso comúnmente son susceptibles a infecciones y esto se convierte en su mayor problema. En algunas personas las infecciones pueden ocurrir no muy seguido y sin consecuencia. En otros, las infecciones pueden ser muy seguidas, y con consecuencias, o provocadas por un micro-organismo inusual.

Localización del Sistema Inmunológico

Como todas las partes del cuerpo tienen que estar protegidas contra micro-organismos u otros materiales extraños, el Sistema Inmunológico se encuentra y tiene acceso en todas las partes del cuerpo. Sin embargo los componentes más importantes del Sistema Inmunológico están concentrados en la sangre, timo, huesos, anginas, ganglios, médula ósea, baso, pulmones, hígado y los intestinos. Cuando una infección empieza en un lugar que solamente tiene unos cuantos componentes del Sistema Inmunológico, como la piel, se mandan señales por el cuerpo para llamar a grandes cantidades de células al sitio de la infección.

Componentes del Sistema Inmunológico

El Sistema Inmunológico está compuesto de distintos tipos de células y proteínas. Cada componente tiene una tarea especial enfocada a reconocer el material extraño (antígenos) y/o reaccionar en contra de los materiales extraños. Algunos componentes tienen como función única y principal el reconocer el material extraño. Otros componentes tienen la función principal de reaccionar contra el material extraño. Y algunos otros componentes funcionan para ambos, reconocer y reaccionar en contra de materiales extraños. Como las funciones del Sistema Inmunológico son tan importantes para sobrevivir, existen mecanismos de respaldo. Si un componente del sistema faltara o no funcionara correctamente, otro componente puede hacer por lo menos algunas de sus funciones.

Los componentes del Sistema Inmunológico son:

  1. Linfocitos B
  2. Linfocitos T
  3. Fagocitos
  4. Complemento

 

Linfocitos B: Son células especializadas del Sistema Inmunológico (también conocidas como células B) que tienen como función principal producir anticuerpos (también llamados inmunoglobulinas o gamaglobulinas). Los linfocitos B se desarrollan de células primitivas (células madre) en la médula ósea. Cuando maduran, los linfocitos B se encuentran en la médula ósea, nodos linfáticos, baso, ciertas áreas del intestino, y en menos extensión en el fluido sanguíneo. Cuando las células B se estimulan con un material extraño (antígenos), responden madurando en otros tipos de células llamadas células plasmáticas. Las células plasmáticas producen anticuerpos. Los anticuerpos encuentran su camino hacia el fluido sanguíneo, secreciones respiratorias, secreciones intestinales, y hasta en las lágrimas. Los anticuerpos son moléculas de proteína altamente especializadas. Para cada antígeno existen anticuerpos moleculares con diseños específicos. Por lo tanto, hay anticuerpos moleculares que embonan, como llave y chapa, al virus del polio, otros que específicamente apuntan a la bacteria que causa la difteria, y otros que son compatibles con el virus de paperas. La variedad de anticuerpos moleculares es tan extensa que las células B tienen la habilidad de producirlos contra virtualmente todos los micro-organismos en el medio ambiente. Cuando las moléculas de los anticuerpos reconocen a los micro-organismos extraños, se unen físicamente al micro-organismo e inician una compleja cadena de reacciones involucrando a otros componentes del Sistema Inmunológico que eventualmente destruyen al micro-organismo. Los nombres químicos para las proteínas de los anticuerpos es inmunoglobulinas o gamaglobulinas. Así como los anticuerpos pueden cambiar de molécula a molécula con respecto al micro-organismo al que se unen, también pueden variar con respecto a sus funciones especializadas en el cuerpo. Este tipo de variación en función especializada es determinada por la estructura química del anticuerpo, que a su vez determina el tipo de anticuerpo (inmunoglobulina).

Hay 5 grandes clases de anticuerpos o gamaglobulinas:

  • Inmunoglobulinas G (IgG)
  • Inmunoglobulinas A (IgA)
  • Inmunoglobulinas M (IgM)
  • Inmunoglobulinas E (IgE)
  • Inmunoglobulinas D (IgD)

Cada clase de inmunoglobulina tiene una característica química especial que le brinda ciertas ventajas. Por ejemplo, los anticuerpos en la fracción IgG se forman en grandes cantidades y pueden viajar del fluido sanguíneo a los tejidos. Estas inmunoglobulinas (anticuerpos) son la única clase que cruza la placenta y le pasa inmunidad de la madre al recién nacido. Los anticuerpos en la fracción IgA se producen cerca de las membranas mucosas y llegan hasta secreciones como las lágrimas, bilis, saliva, mucosa, donde protegen contra infecciones en el tracto respiratorio y los intestinos. Los anticuerpos de la clase IgM son los primeros anticuerpos que se forman en respuesta a las infecciones y por lo tanto son importantes para proteger durante los primeros días de una infección. Los anticuerpos en la clase IgE se encargan de reacciones alérgicas. La función especializada de IgD todavía no se entiende por completo. Los anticuerpos nos protegen contra las infecciones de distintas maneras. Por ejemplo, algunos micro-organismos se tienen que pegar a células del cuerpo para poder causar una infección, pero anticuerpos en la superficie pueden interferir con la habilidad del micro-organismo de adherirse a la célula. Y además, los anticuerpos sujetados en la superficie de algún micro-organismo pueden activar a un grupo de proteínas llamadas el Sistema del Complemento que pueden matar directamente a las bacterias y virus. Bacterias cubiertas por anticuerpos también son mucho más fáciles de ingerir y matar por los fagocitos, que las bacterias que no están cubiertas por anticuerpos. Todos estas acciones de los anticuerpos previenen que los micro-organismos invadan tejidos del cuerpo donde pueden causar infecciones serias.

Resultado de imagen para Linfocito T
Linfocito T

Linfocitos T: Los linfocitos T (algunas veces llamadas células T) son otro tipo de células inmunológicas. Los linfocitos T no producen anticuerpos moleculares. Las funciones especializadas de los linfocitos T son

  1. ) atacar directamente antígenos extraños como virus, hongos, tejidos trasplantados
  2. ) para actuar como reguladores del Sistema Inmunológico.

Los linfocitos T se desarrollan de células madre en la médula ósea. Temprano en la vida del feto, células inmaduras migran al timo, un órgano especializado del Sistema Inmunológico en el pecho. En el timo, los linfocitos inmaduros se desarrollan a linfocitos T maduros («T» por el Timo). El Timo es esencial para este proceso, y los linfocitos T no se pueden desarrollar en el feto si no tiene Timo. Linfocitos T maduros dejan el Timo y se van a otros órganos del Sistema Inmunológico, como el vaso, nodos linfáticos, médula ósea y la sangre. Cada linfocito T reacciona con un antígeno específico, así como cada anticuerpo reacciona con un antígeno específico. De hecho, los linfocitos T tienen moléculas en la superficie que son como anticuerpos que reconocen antígenos. La variedad de linfocitos T es tan grande que el cuerpo tiene linfocitos T que pueden reaccionar contra virtualmente cualquier antígeno. Los linfocitos T también varían con respecto a su función. Hay

  1. ) linfocitos T destructores («killer» o «effector»),
  2. ) linfocitos T de ayuda («helper»),
  3. ) linfocitos T supresores («suppressor»). Cada uno juega distintas partes en el Sistema Inmunológico.

Los linfocitos T destructores son los linfocitos que destruyen al micro-organismo invasor. Estos linfocitos T protegen al cuerpo de bacterias específicas y virus que tienen la habilidad de sobrevivir y reproducirse en las células del cuerpo. Los linfocitos T destructores también responden a tejidos extraños en el cuerpo, como por ejemplo un hígado trasplantado. Los linfocitos T destructores migran al sitio de la infección o al tejido trasplantado. Cuando llegan, los linfocitos T destructores se fijan a su blanco y lo destruyen. Los linfocitos T de ayuda, ayudan a los linfocitos B a producir anticuerpos y ayudan a los linfocitos T destructores en el ataque a sustancias extrañas. Los linfocitos T de ayuda hacen más efectiva la función de los linfocitos B, provocando una mejor y más rápida producción de anticuerpos. Los linfocitos T de ayuda también hacen más efectiva la función de destrucción de los linfocitos T destructores. Por otra parte los linfocitos T supresores, suprimen o apagan a los linfocitos T de ayuda. Sin esta supresión, el Sistema Inmunológico seguiría trabajando después de la infección. Juntos los linfocitos T de ayuda y supresores actúan como el termostato de todo el sistema de linfocitos y los dejan prendidos el tiempo suficiente – no mucho tiempo y no muy poco tiempo.

Fagocitos: Los fagocitos son células especializadas del sistema inmunológico cuya función primaria es ingerir o matar micro-organismos. Estas células, como otras en el sistema inmunológico, se desarrollan de células madre en la médula ósea. Cuando maduran, migran a todos los tejidos del cuerpo pero especialmente en la sangre, baso, hígado, nódulos linfáticos y pulmones.

Hay diferentes tipos de fagocitos. Leucocitos Polimorfo nucleares (neutrófilos o granulocitos) son comúnmente localizados en la sangre y pueden migrar a sitios de infección en minutos. Son estos fagocitos los que se incrementan en la sangre durante una infección y es responsable en gran parte de las cuentas grandes en las biometrías hemáticas.

Resultado de imagen para Macrófago en acción.
Macrófago en acción.
Los fagocitos son también los que dejan el fluido sanguíneo y se acumula en los tejidos durante las primeras horas de la infección y es responsable de la formación de pus. Los monocitos son otro tipo de fagocitos en la sangre. También cubren las paredes de las venas en órganos como el hígado y el baso. Aquí actúan para capturar micro-organismos que pasan por la sangre. Cuando los monocitos salen del fluido sanguíneo y entran en los tejidos, cambian de forma y tamaño para convertirse enmacrófagos. Los fagocitos sirven distintas funciones críticas en el cuerpo contra infecciones. Tienen la habilidad de salir del fluido sanguíneo y moverse hacia los tejidos al sitio de la infección. Cuando llegan al sitio de la infección, se comen al micro-organismo invasor. La ingestión de los micro-organismos es mucho más fácil cuanto están cubiertos de anticuerpos o complemento o ambos. Una vez que el fagocito se come al micro-organismo, inicia una serie de reacciones químicas dentro de la célula que resultan en la muerte del micro-organismo.

  • Complemento: El sistema del complemento tiene 18 proteínas que funcionan de manera ordenada e integrada para ayudar en la defensa contra infecciones y producen inflamación. Algunas de las proteínas del complemento las produce el hígado, y otras las producen ciertos fagocitos, los macrófagos.
  • Para realizar sus funciones de protección, los componentes del complemento deben convertirse de formas inactivas a formas activas. en algunos casos, los micro-organismos primero tienen que combinarse con anticuerpos para poder activar el complemento. En Otros casos los micro-organismos pueden activar el complemento sin la ayuda de los anticuerpos. Ya activado, el complemento puede realizar funciones de defensa contra infecciones. Como mencionamos una de las proteínas del complemento cubre a los micro-organismos para que puedan ser ingeridas con mayor facilidad por los fagocitos. Otros componentes del complemento mandan señales químicas para atraer fagocitos a los lugares de infección. Cuando todo el sistema se encuentra en la superficie de algunos micro-organismos, puede romper la membrana de la célula, y matarla.

 

Entradas Relacionadas