Xilema

Xilema

El xilema (del griego clásico ξυλον, «madera»), también conocido como leña o madera, se reconoce como un tejido vegetal lignificado de conducción que transporta líquidos de una parte a otra de las plantas vasculares.

Transporta agua, sales minerales y otros nutrientes desde la raíz hasta las hojas de las plantas. La sustancia transportada se denomina savia bruta. Junto con el floema, forma una red continua que se extiende a lo largo de la planta.

Consta de varios tipos de células tubulares, caracterizadas por la presencia de una pared celular secundaria y la desaparición de los protoplastos durante el desarrollo.

Elementos del xilema

Los elementos conductores del xilema son las traqueidas, cuyas puntas semejan a la punta de una aguja hipodérmica y están perforadas con punteaduras. Son unicelulares, con una pared secundaria lignificada y lumen celular. Poseen como función primaria la conducción, y como función secundaria el sostén.

En angiospermas

Las traqueidas también se encuentran en algunas angiospermas primitivas (próximas a las gimnospermas), aunque lo habitual en este grupo es la presencia de vasos o tráqueas, además de fibras xilemáticas, cuya función es sostén, y parénquima xilemático o del leño, formado por células alargadas, con pared primaria celulósica, y cuya principal función es la reserva de sustancias.

Xilema primario

El xilema primario está constituido por dos elementos xilemáticos:

  • Protoxilema: durante la ontogenia del xilema primario el primer tejido conductor que se diferencia es el protoxilema, que madura en órganos en crecimiento y está sometido a tensiones, por lo cual sus vasos son anillados o espiralados, engrosamientos que le permiten adaptarse al crecimiento.
  • Metaxilema: se encuentra cuando la planta aún es joven y está en crecimiento, pero maduran cuando el cuerpo vegetal completó su alargamiento. No necesita adaptarse al crecimiento, generalmente lo integran vasos escalariformes, reticulados y punteados.

Los vasos del metaxilema son de mayor diámetro que los del protoxilema.

Xilema secundario

El xilema secundario proviene del cambium, y se compone de:

  • Elementos conductores: tráqueas (vasos), cuyos elementos quedan unidos mediante perforaciones en sus paredes basales, y traqueidas, tubos cuyas células son parecidas a los elementos de las tráqueas, pero se superponen sin perforaciones de las paredes celulares basales.
  • Elementos no conductores: el parénquima axial y radiomedular, y las fibras esclerenquimáticas (fibras del xilema).

Función principal

El xilema se encarga de trasladar la savia desde la raíz hacia la parte proximal de la planta; ésta es la llamada savia bruta, que contiene agua e iones inorgánicos, aunque también puede haber algunos compuestos orgánicos.

La savia es el fluido o líquido transportado por los tejidos de conducción de las plantas (xilema o floema). Otros líquidos exudados por las plantas, tales como látex, cerumen, resinas o mucílago, muchas veces son incorrectamente denominados savia.

La savia transportada por el xilema (denominada «savia bruta») consiste principalmente en agua, elementos minerales, reguladores de crecimiento y otras sustancias que se hallan en disolución. El transporte de esta savia se produce desde las raíces de la planta hasta las hojas por los tubos leñosos. En el siglo XX ha existido una gran controversia acerca del mecanismo de transporte de la savia bruta en la planta. Actualmente, se considera que toda la evidencia sustenta la teoría de la cohesión-tensión.

La savia elaborada es transportada por el floema de forma basípeta (desde su lugar de formación, hojas y tallos verdes, hacia la raíz) y está compuesta principalmente por agua, azúcares, fitorreguladores y minerales disueltos. El transporte de la savia en el floema se produce desde las fuentes (el lugar donde los carbohidratos se producen y almacenan) hacia los destinos (lugares de la planta donde los carbohidratos se utilizan). La hipótesis de flujo de presión es el mecanismo generalmente aceptado para explicar el transporte floemático.

Savia bruta surgiendo de los vasos de conducción de un tallo recién cortado de zapallo (Cucurbita pepo).

La energía para este transporte no la proporcionan los mismos elementos traquearios, que en el tejido desarrollado están de hecho muertos, sino dos fenómenos físicos:

  • La ósmosis, que desplaza hacia arriba el agua acumulada en la raíz gracias a la diferencia en potencial soluble del tejido radical y la humedad del suelo; al absorber agua, la raíz impulsa hacia arriba parte de la misma. Este fenómeno, sin embargo, no basta para llevarla hasta las hojas, y su intensidad varía enormemente entre especies;

Vitis riparia alcanza los 145 kPa, mientras que en también comúnmente conocida como River Bank Grape o Frost Grape, es una vid, nativa de Norteamérica trepadora y rastrera, distribuida extensamente desde Quebec a Texas, y desde Montana a Nueva Inglaterra.

Vitis riparia (USDA).jpg

Descripción

Tiene una vida larga y es capaz de trepar hasta alcanzar el dosel forestal de los árboles más altos. Las parras maduras, tienen una corteza con fisuras con un diámetro de varios centímetros.

Las hojas son alternas, frecuentemente con zarcillos o inflorescencias, gruesamente dentadas, 2-10 in(5-25 cm) de largo y 2-8 in (5-20 cm) de ancho, a veces con pelos escasos y venas en el envés. La inflorescencia es paniculada de 4 a 15 centímetros de largo y flojo, y las flores son pequeñas, fragantes, dioicas, y blancas o verdosas.

La floración Vitis riparia se produce en mayo o junio y produce una baya pequeña de 6 a 15 mm de color azul a negro.

  • Celastrus orbiculatus es prácticamente igual a cero;
  • La succión, que se produce porque el agua que se encuentra en las paredes celulares e interior de las células del mesófilo de la hoja de la parte aérea de la planta pasa al estado de vapor y se pierde en la atmósfera. De este modo, disminuye el potencial agua de estos tejidos respecto a los vecinos, generando un gradiente de potencial agua que hace posible el movimiento del agua entre los tejidos. Estos a sus vez toman agua de paredes vecinas y así sucesivamente hasta los vasos xilemáticos de la hoja. La pérdida de agua del xilema crea una fuerza tensil en la columna de agua contenida en el xilema. Debido a las fuerzas de cohesión entre las moléculas de agua, esa tensión (presión negativa) se transmite en el continuum de la masa líquida del xilema hasta llegar al xilema de la raíz. De esta forma, disminuye el potencial agua en el xilema de la raíz creando un gradiente que posibilita que el agua se mueva desde el suelo al xilema de la raíz y de allí a las hojas y finalmente a la atmósfera.

El xilema se presenta en tres formas principales como:

  • En las plantas herbáceas y en las partes no leñosas, en forma de haces vasculares;
  • En el xilema secundario desarrollado por el tejido meristemático llamado cámbium vascular;
  • Como parte de una estela no dividida en haces, como sucede en los helechos.

En las etapas de transición de las plantas que experimentan crecimiento secundario, las dos primeras formas pueden presentarse simultáneamente, aunque en la mayoría de los casos los haces vasculares contienen sólo xilema primario.

Fitorregulador

Fitorregulador es un producto regulador del crecimiento de las plantas; normalmente se trata de hormonas vegetales (fitohormonas), y sus principales funciones son estimular o paralizar el desarrollo de las raíces y de las partes aéreas.

Las fitohormonas son compuestos orgánicos sintetizados en un órgano o sistema de la planta y que se translocan a otro órgano donde, a muy bajas concentraciones, provocan una respuesta fisiológica.

Una planta, para crecer, necesita luz, oxígeno y CO2, que principalmente toma del aire; y agua y elementos minerales, incluido el nitrógeno, que toma principalmente del suelo. Con todos estos elementos, la planta fabrica materia orgánica, convirtiendo materiales sencillos en los complejos compuestos orgánicos de que están compuestos los seres vivos.

La planta no se limita a aumentar su masa y su volumen, sino que se diferencia, se desarrolla, adquiere una forma y crea una variedad de células, tejidos y órganos.

¿Cómo puede una sola célula, el zigoto, ser el origen de las variadísimas partes ─ vástago, raíz, flor, fruto, semilla ─ que componen el extraordinario individuo conocido como una «planta normal»? Muchos de los detalles de cómo están regulados estos procesos no son conocidos, pero ha quedado claro que el desarrollo normal depende de la conjunción de numerosos factores internos y externos.

Características

Los fitorreguladores reúnen un conjunto de características:

  • Son pequeñas moléculas químicas que afectan al desarrollo y crecimiento de los vegetales a muy bajas concentraciones (por ejemplo, en el vástago de una piña tropical –Ananas comosus– sólo se encuentran 6 mg por kg de material vegetal de ácido indolacético -auxina-, una conocida fitohormona.
  • Son sintetizados por las plantas.
  • El término «hormona» procede de la palabra griega «hormaein» que significa excitar. No obstante, hoy se sabe que muchas hormonas tienen efectos inhibitorios. De modo que en lugar de considerar las hormonas como estimuladores, quizá sea más útil considerarlas como reguladores químicos.
  • La respuesta a un «regulador» particular depende no sólo de su contenido (estructura química) o de su presencia en un tejido, sino de la capacidad del tejido para percibirlo («leerlo») a trávés de la existencia de receptores específicos (especificidad tisular).
  • No todas las fitohormonas son necesariamente translocadas a otros órganos vegetales. Por ejemplo, el etileno es una fitohormona gaseosa capaz de difundir libremente al aire, atravesando las membranas celulares y las paredes celulares. Sin embargo, en su difusión es capaz de ejercer efectos fisiológicos en tejidos distintos de aquél en que fue sintetizado. Por otra parte, ya libre en el aire, el etileno puede afectar otros órganos vegetales expuestos, particularmente si la planta o algún órgano (por ej., fruto) se encuentra en ambientes cerrados en los que la concentración de etileno no sea controlada y termine por superar los umbrales críticos requeridos para su acción.

Thidiazuron, ejemplo de regulador del crecimiento vegetal. Se lo clasifica en el grupo de las citocininas, del tipo fenilurea.
  • Algunos compuestos inorgánicos (Ca2+, K+) pueden ser movilizados por la planta y son capaces de desencadenar respuestas fisiológicas, pero no pueden ser sintetizados por ella, razón por la cual no se consideran hormonas vegetales.
  • Lo mismo se puede decir de algunos compuestos de síntesis como el 2,4-D (análogo auxínico). Sin embargo, el 2,4-D suele incluirse en la nómina de reguladores del crecimiento vegetal.

Se conocen cinco grupos principales de hormonas vegetales o fitohormonas: las auxinas,

Las auxinas son un grupo de fitohormonas que actúan como reguladoras del crecimiento vegetal. Esencialmente provocan la elongación de las células. Se sintetizan en las regiones meristemáticas del ápice de los tallos y se desplazan desde allí hacia otras zonas de la planta, principalmente hacia la base, estableciéndose así un gradiente de concentración. Este movimiento se realiza a través del parénquima que rodea a los haces vasculares. Las auxinas y su rol en el crecimiento vegetal fueron primero descritas por el científico neerlandés Frits Warmolt Went.

La síntesis de auxinas se ha identificado en diversos organismos como plantas superiores, hongos, bacterias y algas, y casi siempre está relacionada con etapas de intenso crecimiento.

La presencia e importancia de las hormonas vegetales se estableció por los estudios de las auxinas. Sobre ellas hay una amplia y profunda información científica que supera ampliamente el conocimiento que se tiene de otras hormonas, lo que ha permitido comprender con más precisión cómo actúan las hormonas en las plantas. Junto con las giberelinas y las citocininas, las auxinas regulan múltiples procesos fisiológicos en las plantas, aunque no son los únicos compuestos con esa capacidad.

Su representante más abundante en la naturaleza es el ácido indolacético (IAA), derivado del aminoácido triptófano.

Las auxinas también son usadas por los agricultores para acelerar el crecimiento de las plantas, para promover la iniciación de raíces adventicias —por lo que una auxina suele ser el componente activo de muchos preparados comerciales utilizados en la fruticultura para el enraizamiento de esquejes de tallos—, para promover la floración y el cuaje de frutos, y para evitar la caída prematura de los frutos.

Síntesis de auxinas

El precursor de la forma activa de la auxina, el ácido indolacético (IAA) proviene del aminoácido L-triptófano; el grupo indol permanece constante, pero para alcanzar la forma de ácido indol-acético debe sufrir una descarboxilación y una desaminación. Esto puede ocurrir por dos vías.

La primera se da en todas las plantas superiores; el L-triptófano transfiere su grupo amino a una molécula de 2-oxoglutarato, dando glutamato e indol-piruvato-indol-piruvato es una molécula muy inestable que no tarda en descarboxilarse. El producto de esta hormona es el crecimiento.

Las auxinas son fitohormonas producidas o sintetizadas en el ápice del tallo.

Generalidades sobre su estructura química

La molécula de compuestos con propiedades auxínicas, se caracteriza por la presencia de un anillo cíclico (la molécula alifática, está inactiva). Tiene por lo menos un doble enlace en el anillo cíclico. Grupo funcional carboxílico ( − C O O H ) {\displaystyle (-COOH)} {\displaystyle (-COOH)} u otro funcionalmente análogo. La cadena lateral influye sobre la actividad de la molécula; la más activa es la cadena acética − C H 2 − C O O H {\displaystyle -CH_{2}-COOH} {\displaystyle -CH_{2}-COOH}

las citocininas, las giberelinas, el etileno y el ácido abscísico. Todas ellas actúan coordinadamente para regular el crecimiento en las diferentes partes de una planta.

Otras sustancias que eventualmente pueden considerarse como fitohormonas son: las poliaminas, los jasmonatos, el ácido salicílico, los brasinosteroides, y la sistemina

Meristemo

Dentro de los tejidos vegetales, los tejidos meristemáticos (del griego μεριστός, «divisible»)1 son los responsables del crecimiento vegetal. Sus células son pequeñas, tienen forma poliédrica, paredes finas, vacuolas pequeñas y abundantes. Se caracteriza por mantenerse siempre joven y poco diferenciado. Tienen capacidad de división y de estas células aparecen los demás tejidos. Lo cual diferencia los vegetales de los animales que llegaron a la multicelularidad de una forma completamente diferente. Las plantas, a diferencia de los animales, tienen un sistema abierto de crecimiento. Esto significa que la planta posee regiones embrionarias más o menos perennes, de las cuales se producen periódicamente nuevos tejidos y órganos. Estas regiones se denominan meristemos. los meristemos son pequeños tejidos que se producen por cambios de la materia prima en las células.

Histología

Los meristemos están compuestos por células no diferenciadas que se dividen activamente, también llamadas células totipotentes por su habilidad de dar lugar a todos los tejidos vegetales. Típicamente, las células meristemáticas son pequeñas, poliédricas, más o menos equidimensionales (dimensiones parecidas en todas las direcciones). En ellas, el citoplasma ocupa la mayor parte de volumen celular ya que las vacuolas son muy pequeñas, las células meristemáticas no contienen cloroplastos ni ningún otro plástido diferenciado, la pared celular de las células meristemáticas es delgada y carece de pared secundaria.

En las plantas, las células meristemáticas son homólogas funcionales de las células madre que dan lugar a todos los tejidos en animales. Estas células se dividen en otras dos, con el fin de dar origen a una célula hija que continúa creciendo de forma meristemática, la cual retiene su carácter embrionario indefinidamente y en otra que se diferencia en una vía de desarrollo particular formando muchos tipos de tejidos.

Producción de células comprometidas y diferenciadas por las células madre meristemáticas

Los meristemos en las plantas pueden ser clasificados de dos formas. De acuerdo a su origen pueden dividirse en meristemos primarios y secundarios. Los meristemos primarios generan los órganos y tejidos que constituyen el cuerpo de la planta y comienzan su actividad después de la germinación de la semilla y constituyen los meristemos apicales del tallo y de la raíz. Los meristemos secundarios se forman en la mayoría de las plantas durante el desarrollo postembrionario y pueden tener estructuras similares a las de los meristemos primarios, pero algunas son muy diferentes, entre ellas: los meristemos axilares, los meristemos de inflorescencia, los meristemos florales, los meristemos intercales y laterales.

De acuerdo a su posición espacial y a los tejidos y partes de la planta que originan, los meristemos pueden clasificarse en tres categorías: apical, lateral e intercalar.2

Meristemos apicales

Los primeros meristemos en aparecer durante el desarrollo del cuerpo vegetativo de una planta vascular están localizados en la punta de tallos y raíces. Debido a su localización, estos meristemos son llamados meristemos apicales. Todos los tejidos meristemáticos primarios y por lo tanto todos los tejidos primarios de la planta se originan a partir del meristemo apical de la raíz o del meristemo apical del brote.

El meristemo apical de la raíz habitualmente está cubierto por una estructura de células diferenciadas que lo protege, conocida como cofia. El meristemo apical del tallo (o yema terminal) puede estar desnudo o cubierto por hojas. En este caso, las hojas son llamadas primordios foliares, que tienen un rudimento de yema auxiliar en su base. Este se convertirá en una yema cuando las hojas se desarrollen, y dará lugar a una nueva rama.

Las células que mantienen al meristemo con un flujo constante de células nuevas son llamadas células iniciales. estas se dividen de tal manera que entre pares de células hermanas una de ellas se convierte en desecho y la otra es capaz de dar origen a un nuevo cuerpo celular, estas últimas se conocen como células derivadas las cuales logran dividirse muchas veces.

En un meristemo apical típico pueden distinguirse tres capas de células cada una de las cuales dará lugar a tejidos y órganos diferentes. Estas capas celulares son llamadas L1, L2 y L3. Las divisiones celulares de las capas L1 y L2 son anticlinales, es decir, solo pueden dividirse de forma perpendicular a la superficie del meristemo y por ello sus células hijas permanecerán siempre en la misma capa. Las divisiones celulares de la capa L3 tienden a ser menos regulares y en todos los planos, así mismo, son capaces de rellenar el interior del meristemo. Para poder determinar las estructuras que originan estas diferentes capas celulares, investigadores han optado por la construcción de quimeras. Las plantas quiméricas están compuestas de capas que dan origen a fenotipos con marcadores distinguibles, de acuerdo a diferencias en el genotipo de cada capa. Las quimeras han sido usadas además para demostrar la capacidad de las capas de que cada capa celular individual puede influir sobre el desarrollo de una capa adyacente.

Además de la organización por capas, los meristemos apicales activos también poseen un patrón de zonas funcionales de organización radial llamado zonación citohistológica. Cada zona está compuesta por células que pueden ser distinguidas de acuerdo con su plano de división, su tamaño y sus grados de vacualización. Estas zonas también exhiben diferentes patrones de expresión genética, reflejando una diferencia funcional en cada zona. La primera de estas es la zona central, la cual es encontrada en la parte superior de los centros de los meristemos activos y está compuesto por células altamente vacuoladas que se dividen infrecuentemente, es un lugar de autorenovación de células madre. Flanqueando la zona central se encuentra la zona periférica, una región en forma de dona de células más pequeña y con una mayor tasa de división celular las cuales darán lugar a la formación de las hojas y los meristemos florales de inflorescencia. Finalmente se encuentra la zona de costilla, debajo de las dos regiones anteriormente descrita. En esta zona, la diferenciación y elongación celular darán lugar al tejido interno del tallo de la planta.

Zonación histológica y por capas en el meristemo apical del tallo

Dentro de los diferentes tejidos de tallos y raíces, los meristemos apicales darán origen a los siguientes tejidos:

  • Protodermo: se localiza alrededor y al exterior, da origen a la epidermis.
  • Procambium: se localiza al interior del protodermo, da lugar a los tejidos vasculares: xilema, floema y cámbium vascular.
  • Meristema fundamental: se localiza entre el Protodermo y Procambium, da origen a parénquima, colénquima y esclerénquima.
  • Meristemos remanentes: Actúan cíclicamente. Se localizan en la base de los entrenudos que están quiescentes (latentes).
  • Meristemos meristemoides: son células adultas diferenciadas que por ser células vivas tienen la propiedad de poder desdiferenciarse y volver a ser meristemáticas y dividirse por mitosis, originando nuevas estructuras, como células epidérmicas que originan estomas, pelos o tricomas y aguijones, etcétera.

Meristemos laterales

Son los responsables del crecimiento radial (secundario). Dan lugar a xilema, floema y parénquima secundario (cámbium) y a parénquima cortical y suber (felógeno), y contribuyen al engrosamiento de tallos y raíces por formación de capas concéntricas nuevas que dan lugar además a un engrosamiento de los ejes. Están distribuidos por toda la planta. Sus células recuperan su capacidad meristemática y comienzan a dividirse formando nuevas células, dando lugar a un crecimiento en grosor en tallos y raíces de plantas leñosas. Los meristemos secundarios son de dos tipos:

  • Cámbium vascular: Es un meristemo secundario que se diferencia junto con el tejido vascular primario dentro del cilindro vascular. No produce los órganos laterales, pero sí el tejido leñoso de tallos y raíces. El cámbium vascular posee dos tipos de células meristemáticas dependiendo de la especie de planta: las células madre fusiformes y las células madre de los rayos. Las células madre fusiformes son células alargadas y vacuoladas las cuales se dividen longitudinalmente para regenerarse a sí mismas y cuyos derivados se diferenciarán en las células conductoras del xilema y del floema. Las células madre de los rayos son células pequeñas cuyos derivados incluyen las células parinquematosas orientadas radialmente dentro de la madera.
  • Cámbium de corcho: Es una capa de células meristemáticas que se desarrollan entre las células de la corteza y del floema secundario. De estas células se derivan las células de la peridermis, las cuales constituyen una superficie externa protectora del cuerpo secundario de la planta, reemplazando la epidermis por una corteza en ramas leñosas y raíces.

Meristemos intercalares

Los tallos de las monocotiledóneas no tienen meristemos secundarios laterales; sin embargo, frecuentemente tienen meristemos intercalares insertados en los tallos entre los tejidos maduros aumentando su longitud. Se encuentran por lo general en la base de los tallos o de las hierbas, debido a este tipo de meristemos, el césped puede seguir creciendo después de ser cortado.

Diferenciación del meristemo

Una característica de las células meristemáticas es su posición con respecto a otras células y esto tiene que ver con su geometría y aunque parece tener un papel importante en la determinación de las naturaleza de la división de los meristemos, las sustancias químicas tienen una influencia más fuerte. La razón Citoquinina/Auxina regula la producción de raíces y tallos por parte de las células del meristemo. Aparentemente las células indiferenciadas de las plantas tienen dos opciones: pueden elongarse o dividirse repetitivamente. Las células que se dividen repetitivamente permanecen indiferenciadas o meristemáticas mientras que las que se elongan son principalmente diferenciadas. Autores experimentaron con la planta de Tabaco (Nicotiana sp.) adhiriendo Ácido Indoleacético(IAA) a los tejidos del tallo esto produjo la expansión rápida de las células formando de este modo células gigantes. La Kinetina sola por ejemplo, tiene muy poco efecto sobre las células, pero el IAA más la Kinetina hace que las células se dividan muy rápido. El resultado es un gran número de células relativamente pequeñas no diferenciadas. En otras palabras las células permanecen meristemáticas en ciertas concentraciones de Auxina/Citoquinina. En otros caso se ha probado que altas concentraciones de Auxina en el ‘tejido calloso’ dan lugar a la formación de raíces, por su parte la kinetina más la auxina pueden determinar no solo el lugar donde se formaran las raíces si no también las yemas apicales.

Los meristemos no poseen tejido vascular, lo que los mantiene parcialmente aislados del resto de la planta. Dado que la mayoría de los virus y bacteria que son endo-patógenos de las plantas, se movilizan por los haces vasculares, se usa el cultivo in vitro de meristemos para la propagación de plantas que tengan mayor oportunidad de estar libres de patógenos.

Tejido vascular

El tejido vascular es un tipo de tejido vegetal complejo, formado por varias clases de células y componentes, que se encuentra en las plantas vasculares. Los componentes primarios del tejido vascular son el xilema y el floema. El xilema es una estructura que transporta a través de la planta agua y sales minerales disueltas. El floema transporta nutrientes ya elaborados por las células y por fotosíntesis. También se hallan asociados al tejido vascular dos meristemas: el cámbium vascular y el felógeno. Todos los tejidos vasculares dentro de una planta constituyen el sistema de tejido vascular.

Las células del tejido vascular son usualmente largas y delgadas. Dado que el xilema y el floema actúan en el sistema de transporte de agua, minerales y nutrientes en la planta, no es de extrañar que su forma sea similar a la de caños o tubos. Las células individuales del floema están conectadas entre sí por los extremos, como si fueran secciones de un tubo. A medida que la planta crece, se diferencia en los extremos de crecimiento de la planta El tejido nuevo se alinea con el tejido vascular existente, manteniendo la conexión a través de la planta. El tejido vascular se dispone en haces vasculares largos, que incluyen al xilema y floema como así también células de protección y estructura. En el tallo y las raíces, el xilema se encuentra más hacia el interior del tallo que el floema, que apunta hacia el exterior. En los tallos de dicotiledóneas Asteriidae, puede haber floema también hacia al interior.

Entre el xilema y el floema se halla un meristema denominado cámbium vascular. Este tejido divide a las células de tal modo que se convierten en xilema y floema adicional. Este crecimiento incrementa más el diámetro de la planta que su longitud. Mientras el cámbium vascular produzca células nuevas, la planta continuará creciendo cada vez más firme. En los árboles y otras plantas que desarrollan madera, el cámbium vascular permite la expansión de tejido vascular que produce madera. Debido a que este crecimiento quiebra la epidermis del tallo, las plantas leñosas también poseen felógeno, que se desarrolla a lo largo del floema. Este felógeno da origen a células ensanchadas suberosas que protegen la superficie de la planta y disminuyen la pérdida de agua. Las producciones de madera y de súber son formas de crecimiento secundario.

En las hojas, los haces vasculares están ubicados a lo largo del mesófilo esponjoso. El xilema está orientado hacia la cara adaxial de la hoja (generalmente hacia arriba). Esta es la razón por la cual los áfidos se encuentran en la cara inferior de las hojas, dado que el floema transporta azúcares producidos por la planta y se encuentran más cerca a la superficie inferior.

Guardar

Guardar

Entradas Relacionadas