SUMA o ADICION.»
FINALIZADA
LETRA PRINCIPAL.
En Binomios 1 se evalúan dos expresiones algebraicas en uno o más valores de x con el propósito de que el estudiante adquiera la habilidad de distribuir una expresión de la forma a(bx+c). Con los pulsadores el estudiante explora las posibilidades de modificar la expresión algebraica y el valor de la x.
En Binomios 2 se continúa con el modelo de áreas para ver la multiplicación por binomios.
El objetivo de esta escena es mostrar al estudiante una forma de multiplicar binomios. Esta forma asemeja la forma de multiplicar dos números. En esta escena se le ayuda al estudiante (mediante un sombreado intermitente) a que calcule paso a paso el producto de dos binomios. De manera aleatoria se generan dos expresiones. La escena guía al estudiante resaltando los términos que se deberán de multiplicar. Esta escena sólo pretende que los alumnos aprendan a multiplicar binomios y no se debe ver como un ejercicio. Una vez que entiendan la forma de multiplicar los binomios, la escena Binomios 4 presentará ejercicios aleatorios para practicar este algoritmo ya sin ningún tipo de ayuda.
En esta escena ya se le pide al estudiante que calcule el producto de dos binomios. La multiplicación la realiza el estudiante con los pulsadores.
La primera exploración sirve para definir término. De forma aleatoria, el programa presenta un término. El alumno debe hacer clic en cada una de las partes de él: coeficiente, literales y exponentes. Una vez hecho esto, aparecerá el nombre que se le da a esa parte del término.
En Binomios 1 se evalúan dos expresiones algebraicas en uno o más valores de x con el propósito de que el estudiante adquiera la habilidad de distribuir una expresión de la forma a(bx+c). Con los pulsadores el estudiante explora las posibilidades de modificar la expresión algebraica y el valor de la x.
Si las fracciones tienen el mismo denominador, la suma o diferencia es otra fracción cuyo numerador es la suma o la diferencia de los numeradores y cuyo denominador es el denominador común.
Si no tienen el mismo denominador, antes de sumar o restar debemos hallar el denominador común que será el m.c.m. de los denominadores. Esto supone una operación previa que es la factorización de los denominadores de las fracciones que queremos sumar o restar, y despuyés tomar los factores comunes y no comunes con mayor exponente. Así, para hallar el numerador de cada fracción se divide el m.c.m. por su denominador y el cociente obtenido se multiplica por el correspondiente numerador. Una vez calculado el denominador común, lo dividimos entre cada uno de los denominadores, multiplicando el resultado por el numerador de la fracción algebraica correspondiente. Realizada esta operación, sólo nos queda sumar los numeradores:
EJERCICIO 1
Tejido vegetal. Cuando hablamos de los tipos y características de los tejidos de las plantas…
El cáncer que se disemina desde el lugar donde se formó hasta una parte del…
La Edad Media es el período de la historia comprendido entre la caída del Imperio Romano…
La cultura medieval. Se entiende por cultura medieval al conjunto de manifestaciones sociales, políticas, económicas…
La Geografía como ciencia. La geografía aparece como ciencia en el siglo XIX, cuando Alexander…
La Prehistoria. Se conoce como prehistoria al periodo de la historia queabarca desde la aparición…