La mecánica clásica es la ciencia que estudia las leyes del comportamiento de cuerpos físicos macroscópicos en reposo y a velocidades pequeñas comparadas con la velocidad de la luz.
La mecánica clásica es uno de las dos principales sub-campos de estudio en la ciencia de la mecánica, que tiene que ver con el conjunto de leyes físicas que rigen y la matemática que describe los movimientos de los cuerpos y los agregados de cuerpos geométricamente distribuidos dentro de un límites determinados por la acción de un sistema de fuerzas. El otro sub-campo es la mecánica cuántica.
La mecánica clásica se utiliza para describir el movimiento de microscopia de objetos, de los proyectiles a las partes de la maquinaria, así como los objetos astronómicos, tales como naves, planetas, estrellas y galaxias. Que produce resultados muy precisos dentro de estos dominios, y es uno de los temas y más grandes y antiguos en la ciencia, la ingeniería y la tecnología. Además de esto, muchas especialidades afines existen que se ocupan de los gases, líquidos y sólidos, y así sucesivamente. Además, la mecánica clásica se ve reforzada por la relatividad especial para la alta velocidad de los objetos que se acercan a la velocidad de la luz. La relatividad general se emplea para controlar la gravedad a un nivel más profundo, y, por último, la mecánica cuántica se encarga de la dualidad onda-partícula de los átomos y moléculas.
La mecánica clásica término fue acuñado en el siglo 20 para describir el sistema de la física matemática iniciada por Isaac Newton y muchos contemporáneos del siglo 17 como filósofos de la naturaleza, basados en las teorías astronómicas anteriores de Johannes Kepler, que a su vez se basaron en las observaciones precisas de Tycho Brahe y los estudios de los ecosistemas terrestres movimiento de proyectiles de Galileo, pero antes de el desarrollo de la física cuántica y la relatividad. Por lo tanto, algunas fuentes excluian a los llamados ” físicos relativistas “de esa categoría. Sin embargo, una serie de fuentes modernas incluyen a la mecánica de Einstein, que en su opinión representa la mecánica clásica en su forma más desarrollada y más precisa.
La etapa inicial en el desarrollo de la mecánica clásica se refiere a menudo como la mecánica newtoniana, y se asocia a los conceptos físicos empleados y los métodos matemáticos inventados por Newton mismo, en paralelo con Leibniz, entre otros. Así lo describe en las secciones siguientes. Abstracto y general de los métodos más que incluyen mecánica lagrangiana y la mecánica hamiltoniana . Gran parte del contenido de la mecánica clásica se creó en los siglos 18 y 19 y se extiende mucho más allá (en particular en el uso de la matemática analítica) la obra de Newton.
¿Fascinante verdad? Y eso que aun nos has visto nada, recuerdo cuando era un niño y no sabía ni la mitad de lo que hoy atesoro en mi mente, tenía tantos sueños y ahora luego de haberme metido en este mundo no me arrepiento en lo más mínimo, te invito a que emprendas este viaje tan maravilloso, a las puertas del pensamiento de los grandes.
Existen varias formulaciones diferentes, en mecánica clásica, para describir un mismo fenómeno natural que, independientemente de los aspectos formales y metodológicos que utilizan, llegan a la misma conclusión.
El Sistema Solar puede ser explicado con gran aproximación mediante la mecánica clásica, concretamente, mediante las leyes de Newton y la ley de la gravitación universal de Newton. Solo algunas pequeñas desviaciones en el perihelio de mercurio, que fueron descubiertas tardíamente, no podían ser explicadas por la teoría de Newton y solo pudieron ser explicadas mediante la teoría de la relatividad general de Einstein.
La mecánica clásica fue concebida como un sistema que permitiera explicar adecuadamente el movimiento de los cuerpos relacionándolo con las causas que los originan, es decir, las fuerzas. La mecánica clásica busca hacer una descripción tanto cualitativa (¿qué y cómo ocurre?), como cuantitativa (¿en qué cantidad ocurre?) del fenómeno en cuestión. En este sentido, la ciencia mecánica podría ser construida desde dos aproximaciones alternativas:
Es aquella fundamentada en la experimentación, esto es, en la observación controlada de un aspecto previamente elegido del medio físico. Un ejemplo puede ayudar a entender este punto: si dejamos caer una pelota de golf desde cierta altura y partiendo del reposo, podemos medir experimentalmente la velocidad que adquiere la pelota para diferentes instantes. Si despreciamos los efectos de la fricción del aire, podremos constatar que, dentro de las inevitables incertidumbres inherentes a las mediciones, la relación de velocidad (v) contra tiempo (t) se ajusta bastante bien a la función lineal de la forma:
En este caso se parte de una premisa básica (experimentalmente verificable) y, con la ayuda de las herramientas aportadas por cálculo infinitesimal, se deducen ecuaciones y relaciones entre las variables implicadas. Si volvemos al ejemplo anterior: es un hecho de naturaleza experimental, que cuando se deja caer un cuerpo, la aceleración con la que desciende (si se ignora la fricción del aire) es constante e igual a g = 9,81 m/s². Por otra parte, se sabe que la aceleración (en este caso, g) se define matemáticamente como la derivada de la velocidad respecto del tiempo:
Por tanto, si se integra esta ecuación diferencial, sabiendo que en el inicio del movimiento (t = 0) la velocidad es nula (v = 0 ), se llega de nuevo a la expresión:
Así, esta es la aproximación analítica o teórica al tema en discusión.
La aproximación empírica establece relaciones entre variables de interés mediante la búsqueda de dependencias o relaciones matemáticas, a partir de resultados experimentales. La aproximación analítica establece relaciones entre variables de interés a partir de premisas y de las herramientas que proporciona el cálculo.
Así, se busca derivar conclusiones y expresiones útiles a partir del razonamiento deductivo y el formalismo matemático. Si se extrema este argumento, la Mecánica Racional podría ser considerada una rama de las matemáticas, donde se juega con relaciones entre variables físicas, y se obtienen a partir de ellas ecuaciones útiles y aplicaciones prácticas.
Los principios básicos de la mecánica clásica son los siguientes:
Es interesante notar que en mecánica relativista el supuesto (2) es inaceptable aunque sí son aceptables los supuestos (1) y (3). Por otro lado, en mecánica cuántica no es aceptable el supuesto (3) (en la mecánica cuántica relativista ni el supuesto (2) ni el (3) son aceptables).
Aunque la mecánica clásica y en particular la mecánica newtoniana es adecuada para describir la experiencia diaria (con eventos que suceden a velocidades muchísimo menores que la velocidad de la luz y a escala macroscópica), debido a la aceptación de estos tres supuestos tan restrictivos como (1), (2) y (3), no puede describir adecuadamente fenómenos electromagnéticos con partículas en rápido movimiento, ni fenómenos físicos microscópicos que suceden a escala atómica.
Sin embargo, esto no es un demérito de la teoría ya que la simplicidad de la misma se combina con la adecuación descriptiva para sistemas cotidianos como: cohetes, movimiento de planetas, moléculas orgánicas, trompos, trenes y trayectorias de móviles macroscópicos en general. Para estos sistemas cotidianos es muy complicado siquiera describir sus movimientos en términos de las teorías más generales como:
La mecánica newtoniana o mecánica vectorial es una formulación específica de la mecánica clásica que estudia el movimiento de partículas y sólidos en un espacio euclídeo tridimensional. Aunque la teoría es generalizable, la formulación básica de la misma se hace en sistemas de referencia inerciales donde las ecuaciones básicas del movimiento se reducen a las Leyes de Newton, en honor a Isaac Newton quien hizo contribuciones fundamentales a esta teoría.
En mecánica vectorial precisamos de tres ecuaciones escalares, o una ecuación vectorial, para el caso más simple de una sola partícula:
y en el caso de sistemas formados por N partículas puntuales, el número de ecuaciones escalares es igual a 3N. En mecánica newtoniana también pueden tratarse los sólidos rígidos mediante una ecuación vectorial para el movimiento de traslación del sólido y otra ecuación vectorial para el movimiento de rotación del sólido:
Estas ecuaciones constituyen la base de partida de la mecánica del sólido rígido.
La mecánica analítica es una formulación más abstracta y general, que permite el uso en igualdad de condiciones de sistemas inerciales o no inerciales sin que, a diferencia de las leyes de Newton, la forma básica de las ecuaciones cambie. La mecánica analítica tiene, básicamente dos formulaciones: la formulación lagrangiana y la formulación hamiltoniana. Las dos llegan básicamente a los mismo resultados físicos, aunque la elección del enfoque puede depender del tipo de problema.
El germen de la mecánica analítica puede encontrarse en los trabajos de Leibniz y en la definición de dos magnitudes escalares básicas: la energía cinética y el trabajo. Estas magnitudes están relacionadas de forma diferencial por la ecuación del principio de fuerzas vivas:
Una propiedad notable de este principio es que siendo el movimiento general un fenómeno en varias dimensiones, parece misterioso que con dos magnitudes escalares relacionadas mediante una sola ecuación diferencial, podamos predecir la evolución de los sistemas mecánicos (en la mecánica vectorial precisamos de
Aunque las formulaciones lagrangiana y hamiltoniana son esencialmente equivalentes, siendo más conveniente un enfoque u otro según el objeto del análisis. Formalmente cabe señalar que la mecánica lagrangiana describe el movimiento de un conjunto de N partículas puntuales mediante coordenadas generales sobre el fibrado tangente del llamado espacio de configuración mediante un sistema de N ecuaciones diferenciales ordinarias de segundo orden. En cambio en mecánica hamiltoniana el movimiento se describe mediante 2N ecuaciones diferenciales de primer orden sobre una variedad simpléctica formada a partir del fibrado tangente mencionado. El conjunto de transformaciones de coordenadas que permitan resolver el problema es más amplio en mecánica hamiltoniana.
La mecánica lagrangiana tiene la ventaja de ser suficientemente general como para que las ecuaciones de movimiento sean invariantes respecto a cualquier cambio de coordenadas. Eso permite trabajar con sistema de referencia inerciales o no-inerciales en pie de igualdad.
Para un sistema de n grados de libertad, la mecánica lagrangiana proporciona un sistema de n ecuaciones diferenciales ordinarias de segundo orden, llamadas ecuaciones del movimiento que permiten conocer como evolucionará el sistema. La forma explícita de las ecuaciones tiene la forma:
Donde
En mecánica lagrangiana existe un modo muy elegante de buscar integrales de movimiento a partir del teorema de Noether. De acuerdo con este teorema cuando un lagrangiano es invariante bajo un grupo de simetría uniparamétrico entonces cualquier generador del álgebra de Lie asociada a ese grupo uniparmétrico es proporcional a una magnitud conservada:
La mecánica lagrangiana puede generalizarse de forma muy abstracta e incluso ser usada en problemas fuera de la física (como en el problema de determinar las geodésicas de una variedad de Riemann). En esa forma abstracta la mecánica lagrangina se construye como un sistema dinámico sobre el fibrado tangente de cierto espacio de configuración aplicándose diversos teoremas y temas de la geometría diferencial.
La mecánica hamiltoniana es similar, en esencia, a la mecánica lagrangiana, aunque describe la evolución temporal de un sistema mediante ecuaciones diferenciales de primer orden, lo cual permite integrar más fácilmente las ecuaciones de movimiento. En su forma canónica las ecuaciones de Hamilton tienen la forma:
Donde H es la función de Hamilton o hamiltoniano, y
Sin embargo, una característica notable de la mecánica hamiltoniana es que trata en pie de igualdad los grados de libertad asociados a la posición y a la velocidad de una partícula. De hecho en mecánica hamiltoniana no podemos distinguir formalmente entre coordenadas generalizadas de posición y coordenadas generaliadas de momento. De hecho se puede hacer un cambio de coordenadas en que las posiciones queden convertidas en momentos y los momentos en posiciones. Como resultado de esta descripción igualitaria entre momentos y posiciones la mecánica hamiltoniana admite transformaciones de coordenadas mucho más generales que la mecánica lagrangiana. Esa mayor libertad en escoger coordenadas generalizadas se traduce en una mayor capacidad para poder integrar las ecuaciones de movimiento y determinar propiedades de las trayectorias de partículas.
Una generalización de la mecánica hamiltoniana es la geometría simpléctica, en esa forma la mecánica hamiltoniana es usada para resolver problemas no físicos, incluso para la matemática básica. Algunas generalizaciones y regeneralizaciones de la mecánica hamiltoniana son:
Historia y Evolución de la Biología. La biología es la ciencia que estudia los seres vivos.…
Tejido vegetal. Cuando hablamos de los tipos y características de los tejidos de las plantas…
El cáncer que se disemina desde el lugar donde se formó hasta una parte del…
La Edad Media es el período de la historia comprendido entre la caída del Imperio Romano…
La cultura medieval. Se entiende por cultura medieval al conjunto de manifestaciones sociales, políticas, económicas…
La Geografía como ciencia. La geografía aparece como ciencia en el siglo XIX, cuando Alexander…