Ecuaciones. Una ecuación es una igualdad entre expresiones algebraicas que se cumple solamente para ciertos valores de las letras. – Los miembros son las expresiones que aparecen a cada lado del signo de igualdad. — Los términos son los sumandos que forman los miembros. — Las incógnitas son las letras.

Ecuaciones
Elementos de una ecuación
En las ecuaciones distinguimos varios elementos:
Incógnita: La letra (o variable) que figura en
la ecuación.
Miembro: Es cada una de las dos expresiones
algebraicas separadas por el signo =.
Término: Cada uno de los sumandos que
componen los miembros de la ecuación.
Grado: Es el mayor de los exponentes de las
incógnitas, una vez realizadas todas las
operaciones (reducir términos semejantes)
Solución de una ecuación
La solución de una ecuación es el valor de la
incógnita que hace que la igualdad sea cierta.
• Si una ecuación tiene solución se llama
compatible, si no tiene se dice incompatible.
• Dos ecuaciones que tienen las misma soluciones
se dicen que equivalentes.

Distingue los elementos de esta
ecuación:
14x (19x 18) x 7x 1 + + =++
Incógnita: x
Primer Miembro: x + (19x+18)
Segundo miembro: 2
x 7x 1 + +
Términos: 14x, 19x, 18, x2
, 7x, 1
Grado: 2
x+2 = 9 Solución x=7
7+2=9 Es compatible
Un ecuación equivalente:
2x+4=18
Observa que para obtener una
ecuación equivalente se han
multiplicado los dos miembros por 2.
2(x+2) = 2·9 → 2x+4 = 18

Ecuaciones de primer grado
Solución

Una ecuación de primer grado con una incógnita es
una igualdad algebraica que se puede expresar en la
forma ax+b=0, con a#0.

La solución de una ecuación del tipo ax+b=c es:

x=-a/b

Aplicaciones. Resolución de Problemas
Las ecuaciones de primer grado se aplican a la
resolución de problemas.
Llamamos x al menor de los tres números.
Los números consecutivos son x+1, x+2
La ecuación es: x+x+1+x+2=249
Resolvemos: 3x + 3 = 249
3x = 246
x = 246/3 = 82

La solución: Los números son 82, 83 y 84

Resolver: -6x+4=15x
Pasamos la x la izquierda y lo que no
tiene x a la derecha
-6x-15x=-4
Hacemos operaciones:

-21x=4
Despejamos la x:
4 x 21

EJERCICIOS resueltos

  1. Resuelve las siguientes ecuaciones:
    a) 7x 5 9x 7 1
    7 8
    −+ −
  • =− Sol:
    7x 5 9x 7
    56 56 56·( 1) 8( 7x 5) 7(9x 7) 56
    7 8
    47
    56x 40 63x 49 56 7x 47 x
    7
    −+ − + = − → − + + − =−
    − − + + − =− → =− → =
    b) 2x (x 1) 5x 2
    4 6
    −+ + = Sol:
    x 1 5x 2
    12 12 3(x 1) 2(5x 2)
    4 6
    7
    3x 3 10x 4 7x 7 x 1
    7
    − + = → −= +
    − = + →− = → = =−

    c) 3x 7(x 1) 2x 1 2
    6 3
    −+ − = − Sol:
    3x 7(x 1) 2x 1 6 6 6·2 3x 7(x 1) 2(2x 1) 12
    6 3
    7
    3x 7x 7 4x 2 12 8x 7 x
    8
    −+ − = − → − + = −−
    − − = − − →− =− → =
    d) 2x 5 2x 8
    x
    3 7
    − −+ − = Sol:
    2x 5 2x 8
    21 21 21x 7(2x 5) 3( 2x 8) 21x
    3 7
    14x 35 6x 24 21x x 59 x 59
    − −+ − = → − −− + =
    − + − = →− = → =−
    e) 6x (x 8) 2x 17 x
    6 3
    −− −− = + Sol:
    6x (x 8) 2x 17 6 6 6x 6x (x 8) 2( 2x 17) 6x
    6 3
    5x 8 4x 34 6x 3x 42 x 14
    − − −− = + → − − =− − +
  • =− − + → =− → =−
  1. La edad de un padre es el triple que la de su hijo, si entre los dos suman 56 años
    ¿Cuál es la edad de cada uno?
    Sol:
    Edad del hijo:x 56 x 3x 56 4x 56 x 14
    Edad del padre:3x 4
    La edad del hijo es 14 años y la del padre es 42 años
  • = → = →= =
  1. ¿Cuántos litros de vino de 5€ el litro deben mezclarse con vino de 3€ el litro para
    obtener 50 litros de vino cuyo precio sea de 4€ el litro?
    Sol:
    Litros de vino de 5 € 😡
    litros precio
    vino de 3 € el litro x 5x 5x 3(50 x) 200 2x 50 x 25 vino de 4 € el litro 50 x 3(50 x)
    vino de 6 € el litro 50 200
    Hay que mezclar 25 litros de 5 € con vino de 3 €

Ecuación de segundo grado
Solución
Las ecuaciones de segundo grado son de la forma:
ax2 + bx + c =0
Para resolverlas empleamos la fórmula:

: Ecuaciones incompletas Cuando b, c ó los dos son 0 estamos ante una ecuación de segundo grado incompleta. En estos casos no es necesario aplicar la fórmula sino que resulta más sencillo proceder de la siguiente manera:

• Si b=0 ax2 + c =0 ⇒ ax2 =-c ⇒ x2 =-c/a

a c x = ± −

*Si –c/a>0 hay dos soluciones

*Si –c/a<0 no hay solución

• Si c=0 ax2 + bx =0 sacando x factor común : x(ax+b)=0 ⇒ x=0, x=-b/a son las dos soluciones.

Resolver: x2 – 2x – 8 =0

2×2 – 6x = 0
x(2x – 6) = 0
Soluciones:
x=0
x=3

Resolver: -x2/2 +2 = 0
x2
= 4
Soluciones:
x=2
x=-2

Número de soluciones

Estas ecuaciones pueden tener dos soluciones, una o ninguna solución, según sea b2-4ac, el llamado discriminante.

b2-4ac > 0 Hay dos soluciones.

b2-4ac = 0 Hay una solución doble: x=-b/2a

b2-4ac < 0 No hay solución.

admin

Compartir
Publicado por
admin

Entradas recientes

Los Reinos de la naturaleza

Los Reinos de la naturaleza. Los seres vivos se clasifican en 5 reinos de la…

3 semanas hace

Química Orgánica

La química orgánica (también llamada química del carbono) es el estudio de las sustancias y compuestos de tipo orgánico, lo…

3 meses hace

Expresión Genética

Expresión Genética. La expresión génica es el proceso por el cual la información codificada por…

4 meses hace

Historia de la Tierra.

La Tierra. Nuestro hogar, el planeta Tierra, es un planeta terrestre y rocoso. Tiene una…

4 meses hace

La Biología Celular

La Biología Celular. La biología celular es la rama de la biología que estudia todos…

4 meses hace

La Ciencia Bioquímica

La Ciencia Bioquímica La bioquímica es la química de la vida, es decir, la rama…

4 meses hace