Difracción

Difracción

En física, la difracción es un fenómeno característico de las ondas que se basa en la desviación de estas al encontrar un obstáculo o al atravesar una rendija. La difracción ocurre en todo tipo de ondas, desde ondas sonoras, ondas en la superficie de un fluido y ondas electromagnéticas como la luz visible y las ondas de radio. También sucede cuando un grupo de ondas de tamaño finito se propaga; por ejemplo, por causa de la difracción, el haz colimado de ondas de luz de un láser debe finalmente divergir en un rayo más amplio a una cierta distancia del emisor.

La difracción es un fenómeno que tiene lugar cuando las ondas que forman la luz atraviesan un orificio estrecho, ya que estas se deforman y a partir de ese punto no avanzarán en forma de haz; sino que “se abrirán” como los faros de un coche en mitad de la noche debido a que el orificio actúa como un nuevo emisor. Y claro, como ya os estaréis imaginando esto es lo que ocurre cuando empleamos las aperturas más pequeñas disponibles en un objetivo, puesto que estamos obligando a pasar a la luz por un agujero diminuto de un modo muy similar a lo mostrado por la siguiente imagen.

Teoría

La difracción puede ser entendida a nivel fenomenológico usando el principio de Huygens, según el cual un frente de onda se puede visualizar como una sucesión de emisores puntuales, que reemiten la onda al oscilar, en respuesta a ella y contribuyen así a su propagación. Aunque cada oscilador individual genera una onda esférica, la interferencia de todas ellas da lugar a una onda plana que viaja en la misma dirección que la onda inicial. Cuando el frente de onda encuentra un obstáculo los emisores correspondientes al extremo del frente de onda obstruido no tienen otros emisores que interfieran con las ondas que ellos generan, y estas se aproximan a ondas esféricas o cilíndricas. Como consecuencia, al adoptar el frente de onda una forma redondeada en donde fue recortado, la dirección de propagación de la onda cambia, girando hacia el obstáculo. Se suele decir que la onda «dobla» las esquinas.

Los efectos de la difracción pueden predecirse matemáticamente usando dos aproximaciones distintas. La difracción de Fraunhofer permite estimar el comportamiento del fenómeno producido por un obstáculo situado a una distancia lo suficientemente alejada de la zona de estudio. Es un método matemáticamente sencillo, pero limitado por dicha condición. Por otro lado, la aproximación conocida como difracción de Fresnel toma en cuenta el carácter vectorial de las elongaciones de las ondas, permitiendo realizar predicciones en las cercanías del obstáculo que produce la difracción. Es matemáticamente más complicada que el método de Fraunhofer, por lo que su aplicación se limita solo a las regiones donde la difracción de Fraunhofer no es aplicable.

Resulta interesante pensar a la difracción como una consecuencia de la ecuación de onda. Mientras que una onda plana infinita es solución de la ecuación de onda, una onda plana recortada no lo es. Para que la misma sea una solución de dicha ecuación debe introducirse la difracción. Es el caso de un rayo láser que es una onda plana pero obstruida por las dimensiones finitas del dispositivo de generación. La consecuencia inmediata es que la ecuación de onda exige que dicha condición no persista y se introduce inmediatamente una componente de difracción. Por eso el haz diverge a medida que avanza, incrementándose su sección.

Cabe mencionar que la difracción es una de los cinco fenómenos de la luz en la que se encuentran la reflexión, refracción, interferencia y polarización.

Difracción e interferencia

La difracción y la interferencia son fenómenos inseparables, al punto que no es siempre sencillo distinguirlos. Esto es debido a que la difracción es una forma particular de interferencia. Citando a Richard Feynman: «No-one has ever been able to define the difference between interference and diffraction satisfactorily. It is just a question of usage, and there is no specific, important physical difference between them». («Nadie ha sido capaz de definir la diferencia entre interferencia y difracción de forma satisfactoria. Es solo una cuestión de uso, sin diferencias físicas importantes»).

Como consecuencia, cuando en la física, se necesita estudiar formas de interferencia específicas, es necesario poder distinguir los efectos provenientes de las mismas a los efectos provenientes de la difracción.

La interferencia se produce cuando la longitud de onda es mayor que las dimensiones del objeto, por tanto, los efectos de la difracción disminuyen hasta hacerse indetectables a medida que el tamaño del objeto aumenta comparado con la longitud de onda.

Resultado de imagen para Difracción e interferencia

Aplicaciones

En el espectro electromagnético los rayos X tienen longitudes de onda similares a las distancias interatómicas en la materia. Es posible por lo tanto utilizar la difracción de rayos Xcomo un método para explorar la naturaleza de los cristales y otros materiales con estructura periódica. Esta técnica se utilizó para intentar descubrir la estructura del ADN, y fue una de las pruebas experimentales de su estructura de doble hélice propuesta por James Watson y Francis Crick en 1953. La difracción producida por una estructura cristalina verifica la ley de Bragg.

Debido a la dualidad onda-corpúsculo característica de la mecánica cuántica es posible observar la difracción de partículas como neutrones o electrones. En los inicios de la mecánica cuántica este fue uno de los argumentos más claros a favor de la descripción ondulatoria que realiza la mecánica cuántica de las partículas subatómicas.

Resultado de imagen para Difracción aplicación

Entradas Relacionadas