PROTEÍNAS
Proteinas. Las proteínas (del francés: protéine, y este del griego’ πρωτεῖος, proteios, ‘prominente’, ‘de primera calidad’) o prótidos son biomoléculas formadas por cadenas lineales de aminoácidos.
Por sus propiedades físicoquímicas, las proteínas se pueden clasificar en proteínas simples (holoproteidos), formadas solo por aminoácidos o sus derivados; proteínas conjugadas (heteroproteidos), formadas por aminoácidos acompañados de sustancias diversas, y proteínas derivadas, sustancias formadas por desnaturalización y desdoblamiento de las anteriores. Las proteínas son necesarias para la vida, sobre todo por su función plástica (constituyen el 80 % del protoplasma deshidratado de toda célula), pero también por sus funciones biorreguladoras (forman parte de las enzimas) y de defensa (los anticuerpos son proteínas).
Las proteínas desempeñan un papel fundamental para la vida y son las biomoléculas más versátiles y diversas. Son imprescindibles para el crecimiento del organismo y realizan una enorme cantidad de funciones diferentes, entre las que destacan:
- Estructural. Esta es la función más importante de una proteína (Ej.: colágeno)
- Contráctil (actina y miosina)
- Enzimática (Ej.: sacarasa y pepsina)
- Homeostática: colaboran en el mantenimiento del pH (ya que actúan como un tampón químico)
- Inmunológica (anticuerpos)
- Producción de costras (Ej.: fibrina)
- Protectora o defensiva (Ej.: trombina y fibrinógeno)
- Transducción de señales (Ej.: rodopsina).
Las proteínas están formadas por aminoácidos. Las proteínas de todos los seres vivos están determinadas mayoritariamente por su genética (con excepción de algunos péptidos antimicrobianos de síntesis no ribosomal), es decir, la información genética determina en gran medida qué proteínas tiene una célula, un tejido y un organismo.
Las proteínas se sintetizan dependiendo de cómo se encuentren regulados los genes que las codifican. Por lo tanto, son susceptibles a señales o factores externos. El conjunto de las proteínas expresadas en una circunstancia determinada es denominado proteoma.
Son polímeros formados por la unión de moléculas llamadas aminoácidos mediante enlaces peptídicos.Hay proteínas formadas por un solo polímero y otras que ensamblan varios polímeros proteicos.En ocasiones se encuentran unidas a otras moléculas orgánicas.Son las moléculas orgánicas más abundantes en una célula.Químicamente están formadas por C,H,O y N, aunque casi todas tienen S.
Otros elementos que abundan en las proteínas son P, Fe, Zn, Cu, etc.Muestran una gran diversidad debido a que se forman a partir de 20 aminoácidos distintos.
Dada esta diversidad las proteínas llevan a cabo las funciones más importantes y específicas de la materia viva.Las proteínas son la expresión de lo genes.
-FUNCIONES
- Función de reserva. En el desarrollo embrionario, la ovoalbúmina, la caseína de la leche.
- Función estructural. Las proteínas son utilizadas en casi todas las membranas celulares, por ejemplo, las histonas de los cromosomas, la elastina de las paredes de los vasos sanguíneos y músculos, queratina de las escamas, uñas, etc.
- Función de transporte. Tanto a través de las membranas, como por el medio interno.Hemoglobina, proteína especializada de transporte de O2 por la sangre; la mioglobina que hace lo mismo en el músculo estirado o citocromos, que transportan electrones y lipoproteínas.
- Función defensiva. Los anticuerpos(inmunoglobulinas), el firbrinógeno y trombina que participan en la coagulación sanguínea, las mucinas de las mucosas digestivas y respiratorias.
- Función reguladora. La insulina, que regula el nivel de glucosa en la sangre, el glucagón, que tiene la labor contraria a la insulina.
- Función contractil. La actina y la miosina, que son responsables de la contracción muscular.
- Función receptora. Su función es escoger o fijar ciertas sustancias.Los receptores de la membrana.
- Función enzimática. Todas las reacciones bioquímicas de nuestro cuerpo están catalizadas por una enzima.
ESTRUCTURA DE LAS PROTEÍNAS
Las proteínas se disponen en el espacio de una manera que se llama conformación proteica.tienen una estructura tridimensional concreta, y dentro de la estructura hay distintos niveles :
•Primaria.Es la secuencia lineal de los aminoácidos que forman una proteína.Distinguimos un extremo N-terminal y un extremo C-terminal. Esta estructura es fundamental ya que de ella dependen todas las demás.Si alteramos el orden del tipo de aminoácidos de la estructura primaria obtendremos una proteína diferente.
•Secundaria.Es la disposición en el espacio de la estructura primaria.Dependerá de los grupos R y de los aminoácidos de esa proteína,según sean estos grupos R, se producirán unas interacciones u otras.Depende del giro del carbono α.
Se conocen 3 tipos:
1. Helice α.En este tipo de estructura, la cadena polipeptídica se va enrollando en espiral sobre sí misma debido a los giros que se producen en torno al carbono α de cada aminoácido.Gira a la derecha, es dextrógira.Esta estructura se mantiene gracias a los enlaces intracatenarios de puentes de H entre el grupo carboxilo de un aminoácido y el grupo amino del cuarto aminoácido que le sigue.Los grupos R laterales quedan por la parte exterior de la hélice.
2. Lámina β .Es también una hélice pero no existen puentes de H entre la hélice, y
tienen una disposición en zig-zag.La estructura se estabiliza mediante puentes de H de cadenas polipeptídicas distintas o segmentos de una misma cadena. Las cadenas se pueden unir de forma paralela cuando se disponen en el mismo sentido N-C o antiparalelas si se alternan cadenas polipetídicas en las direcciones N-C y C-N. Se forma entonces una lámina plegada donde los radicales aparecen situados por encima y por debajo de la lámina.
3. Hélice de colágeno.Es la estructura secundaria que presenta el colágeno, que forma parte de los tendones y los teidos conectivos; se trata de una estructura particularmente rígida.
•Terciaria.Es la disposición en el espacio de la estructura secundaria, de manera que la cadena se retuerce adquiriendo una estructura estable final que llamamos estructura terciaria.Las uniones que mantienen estables la estructura terciaria se dan entre los radicales de aminoácidos que se encuentran muy alejados en la cadena polipeptídica.Estas uniones pueden ser de diferentes tipos:
- Puentes de H.
- Atracciones electrostáticas.
- Atracciones hidrofóbicas.
- Fuerzas de Van der Waals.
- Puentes disulfuro(se suelen dar entre restos de cisteina).
Los grupos hidrófobos están situados hacia dentro en la estructura excepto las proteínas de la membrana plasmática.Algunas proteínas tienen estructura globular y otras laminar.Son solubles en agua y disoluciones salinas cuando tienen estructura globular.
•Cuaternaria.Esta estructura aparece cuando la proteína está formada por la unión de dos o más cadenas polipeptídicas, cada una de las cuales recibe el nombre de monómero, protómero o subunidad.Las interacciones que mantienen estables esta estructura son los puentes de H, fuerzas de Van der Waals, atracciones electrostáticas, puentes disulfuro y atracciones hidrofóbicas.
Un ejemplo de estructura cuaternaria es la hemoglobina, que esta formada por cuatro cadenas y partes no proteicas(grupo hemo).Esta estructura cuaternaria es la responsable de su funcionalidad biológica.
Bioquímica
Los prótidos o proteínas son biopolímeros formados por un gran número de unidades estructurales simples repetitivas (monómeros) denominadas aminoácidos, unidas por enlaces peptídicos. Debido a su gran tamaño, cuando estas moléculas se dispersan en un disolvente adecuado, forman siempre dispersiones coloidales, con características que las diferencian de las disoluciones de moléculas más pequeñas. Muchas proteínas presentan carga neta en ciertos rangos de pH del medio. Por ello pueden considerarse ionómeros.
Por hidrólisis, las moléculas de proteína se dividen en numerosos compuestos relativamente simples, de masa molecular pequeña, que son las unidades fundamentales constituyentes de la macromolécula. Estas unidades son los aminoácidos, de los cuales existen veinte especies diferentes y que se unen entre sí mediante enlaces peptídicos. Cientos y miles de estos aminoácidos pueden participar en la formación de la gran molécula polimérica de una proteína.
Todas las proteínas tienen carbono, hidrógeno, oxígeno y nitrógeno, y casi todas poseen también azufre. Si bien hay ligeras variaciones en diferentes proteínas, el contenido de nitrógeno representa, por término medio, 16 % de la masa total de la molécula; es decir, cada 6,25 g de proteína contienen 1 g de N. El factor 6,25 se utiliza para estimar la cantidad de proteína existente en una muestra a partir de la medición de N de la misma.
La síntesis proteica es un proceso complejo cumplido por las células según las directrices de la información suministrada por los genes.
Las proteínas son largas cadenas de aminoácidos unidas por enlaces peptídicos entre el grupo carboxilo (-COOH) y el grupo amino (-NH2) de residuos de aminoácido adyacentes. La secuencia de aminoácidos en una proteína está codificada en su gen (una porción de ADN) mediante el código genético. Aunque este código genético específica los 20 aminoácidos «estándar» más la selenocisteína y —en ciertos Archaea— la pirrolisina, los residuos en una proteína sufren a veces modificaciones químicas en la modificación postraduccional: antes de que la proteína sea funcional en la célula, o como parte de mecanismos de control. Las proteínas también pueden trabajar juntas para cumplir una función particular, a menudo asociándose para formar complejos proteicos estables.
Síntesis
Biosíntesis
Las proteínas se ensamblan a partir de sus aminoácidos utilizando la información codificada en los genes. Cada proteína tiene su propia secuencia de aminoácidos que está especificada por la secuencia de nucleótidosdel gen que la codifica. El código genético está formado por un conjunto de tri-nucleótidos denominados codones. Cada codón (combinación de tres nucleótidos) designa un aminoácido, por ejemplo AUG (adenina-uracilo-guanina) es el código para la metionina. Como el ADN contiene cuatro nucleótidos distintos, el número total de codones posibles es 64; por lo tanto, existe cierta redundancia en el código genético, estando algunos aminoácidos codificados por más de un codón. Los genes codificados en el ADN se transcriben primero en ARN pre-mensajero mediante proteínas como la ARN polimerasa. La mayor parte de los organismos procesan entonces este pre-ARNm (también conocido como tránscrito primario) utilizando varias formas de modificación post-transcripcional para formar ARNm maduros, que se utilizan como molde para la síntesis de proteínas en el ribosoma. En los procariotas el ARNm puede utilizarse tan pronto como se produce, o puede unirse al ribosoma después de haberse alejado del nucleoide. Por el contrario, los eucariotas sintetizan el ARNm en el núcleo celular y lo translocan a través de la envoltura nuclear hasta el citoplasma donde se realiza la síntesis proteica. La tasa de síntesis proteica es mayor en procariotas que en eucariotas y puede alcanzar los 20 aminoácidos por segundo.
El proceso de sintetizar una proteína a partir de un molde de ARNm se denomina traducción. El ARNm se carga en el ribosoma y se lee, tres nucleótidos cada vez, emparejando cada codón con su anticodóncomplementario localizado en una molécula de ARN de transferencia que lleva el aminoácido correspondiente al codón que reconoce. La enzima aminoacil ARNt sintetasa «carga» las moléculas de ARN de transferencia(ARNt) con los aminoácidos correctos. El polipéptido creciente se denomina cadena naciente. Las proteínas se biosintetizan siempre del extremo N-terminal al extremo C-terminal.
De esta forma, se consigue la estructura primaria de la proteína, es decir, su secuencia de aminoácidos. Ahora ésta debe plegarse de la forma adecuada para llegar a su estructura nativa, la que desempeña la función. Anfinsen en sus trabajos con la ribonucleasa A, postuló su hipótesis que dice que toda la información necesaria para el plegamiento se encuentra contenida enteramente en la estructura primaria. Esto dio pie a que en 1969 Levinthal sugiriese la existencia de una paradoja a la que se conoce como la paradoja de Levinthal: si una proteína se pliega explorando al azar todas las conformaciones posibles necesitaría un tiempo mayor que la edad del propio Universo. Dado que las proteínas se pliegan en un tiempo razonable y de forma espóntanea, se ha resuelto esta paradoja indicando que las proteínas no prueban todas las conformaciones posibles, sino que eligen una vía de plegamiento específica con un número de pasos finitos, es decir, se reduce el hiperespacio potencial de plegamiento. También cabe mencionar la existencia de chaperonas moleculares, proteínas que ayudan a otras a plegarse con gasto energético (ATP).5
El tamaño de la proteína sintetizada puede medirse por el número de aminoácidos que contiene y por su masa molecular total, que normalmente se expresa en daltons (Da) (sinónimo de unidad de masa atómica), o su unidad derivada kilodalton (kDa). Por ejemplo, las proteínas de la levadura tienen en promedio 466 aminoácidos y una masa de 53 kDa. Las proteínas más largas que se conocen son las titinas, un componente de el sarcómero muscular, con una masa molecular de casi 3.000 kDa y una longitud total de casi 27 000 aminoácidos.
Síntesis química
Mediante una familia de métodos denominados de síntesis peptídica es posible sintentizar químicamente proteínas pequeñas. Estos métodos dependen de técnicas de síntesis orgánica como la ligación para producir péptidos en gran cantidad. La síntesis química permite introducir aminoácidos no naturales en la cadena polipeptídica, como por ejemplo amino ácidos con sondas fluorescentes ligadas a sus cadenas laterales. Estos métodos son útiles para utilizarse en laboratorios de bioquímica y biología celular, no tanto para aplicaciones comerciales. La síntesis química es ineficiente para polipéptidos de más de 300 aminoácidos, y las proteínas sintetizadas puede que no adopten fácilmente su estructura tridimensional nativa. La mayor parte de los métodos de síntesis química proceden del extremo C-terminal al extremo N-terminal, en dirección contraria por tanto a la reacción biológica.
Proteoma
El Proteoma son todas las proteínas expresadas por un genoma, célula o tejido.
Funciones
Las proteínas ocupan un lugar de máxima importancia entre las moléculas constituyentes de los seres vivos (biomoléculas). Prácticamente todos los procesos biológicos dependen de la presencia o la actividad de este tipo de moléculas. Bastan algunos ejemplos para dar idea de la variedad y trascendencia de las funciones que desempeñan. Son proteínas:
- La actina y la miosina, responsables finales del acortamiento del músculo durante la contracción
- Los anticuerpos, encargados de acciones de defensa natural contra infecciones o agentes patógenos
- Funciones de reserva. Como la ovoalbúmina en el huevo, o la caseína de la leche
- El colágeno, integrante de fibras altamente resistentes en tejidos de sostén
- Casi todas las enzimas, catalizadores de reacciones químicas en organismos vivientes
- La hemoglobina y otras moléculas con funciones de transporte en la sangre
- Muchas hormonas, reguladores de actividades celulares
- Los receptores de las células, a los cuales se fijan moléculas capaces de desencadenar una respuesta determinada.
Todas las proteínas realizan elementales funciones para la vida celular, pero además cada una de éstas cuenta con una función más específica de cara a nuestro organismo.
Debido a sus funciones, se pueden clasificar en:
- 1. Catálisis: Está formado por enzimas proteicas que se encargan de realizar reacciones químicas de una manera más rápida y eficiente. Procesos que resultan de suma importancia para el organismo. Por ejemplo la pepsina, ésta enzima se encuentra en el sistema digestivo y se encarga de degradar los alimentos.
- 2. Reguladoras: Las hormonas son un tipo de proteínas las cuales ayudan a que exista un equilibrio entre las funciones que realiza el cuerpo. Tal es el caso de la insulina que se encarga de regular la glucosa que se encuentra en la sangre.
- 3. Estructural: Este tipo de proteínas tienen la función de dar resistencia y elasticidad que permite formar tejidos así como la de dar soporte a otras estructuras. Este es el caso de la tubulina que se encuentra en el citoesqueleto.
- 4. Defensiva: Son las encargadas de defender el organismo. Glicoproteínas que se encargan de producir inmunoglobulinas que defienden al organismo contra cuerpos extraños, o la queratina que protege la piel, así como el fibrinógeno y protrombina que forman coágulos.
- 5. Transporte: La función de estas proteínas es llevar sustancias a través del organismo a donde sean requeridas. Proteínas como la hemoglobina que lleva el oxígeno por medio de la sangre.
- 6. Receptoras: Este tipo de proteínas se encuentran en la membrana celular y llevan a cabo la función de recibir señales para que la célula pueda realizar su función, como acetilcolina que recibe señales para producir la contracción.
Estructura
Es la manera como se organiza una proteína para adquirir cierta forma, presentan una disposición característica en condiciones fisiológicas, pero si se cambian estas condiciones como temperatura o pH pierde la conformación y su función, proceso denominado desnaturalización. La función depende de la conformación y ésta viene determinada por la secuencia de aminoácidos, termodinámicamente solo una conformación es funcional.
Para el estudio de la estructura es frecuente considerar una división en cuatro niveles de organización, aunque el cuarto no siempre está presente.
Conformaciones o niveles estructurales de la disposición tridimensional:
- Estructura primaria
- Estructura secundaria
- Estructura terciaria
- Estructura cuaternaria
Las proteínas adquieren su estructura instantáneamente, no pasan por cada una de las estructuras.
Dentro de estos niveles estructurales también existen:
- Giros: están compuestos por tres o cuatro aminoácidos, son giros se encuentran en la superficie de una proteína, formando curvas cerradas que redirigen el esqueleto del polipéptido de vuelta hacia el interior, glicina y prolina son comúnmente presentes en los giros, son estructuras definidas.
- Bucles: pueden presentar diferentes formas, estos son partes del esqueleto polipeptídico, son curvas más largas que los giros.
- Motivos: o pliegues son combinaciones particulares de estructuras secundaria, se acumulan en la estructura terciaria de una proteína. En algunos casos, los motivos son para una función específica asociada, los tres principales motivos son:
- Hélice-giro-hélice: caracteriza a la familia de factores transcripsionales.
- Dedo de cinc: encontrado en proteínas que enlazan ARN o ADN.
- Hélice superenrollada: presente en proteínas fibrosas.
- Dominios: es parte de la estructura terciaria de las proteínas de más de 15.000 MW, es una región compacta plegada del polipéptido, pueden ser diferentes combinaciones de motivos, por ejemplo, la membrana viral presenta dos tipos de dominios, un dominio globular y un dominio fibroso.
Propiedades de las proteínas
Cinco son las propiedades principales que permiten la existencia y aseguran la función de las proteínas:
- Amortiguador de pH (conocido como efecto tampón): Actúan como amortiguadores de pH debido a su carácter anfótero, es decir, pueden comportarse como ácidos (donando electrones) o como bases (aceptando electrones).
- Capacidad electrolítica: Se determina a través de la electroforesis, técnica analítica en la cual si las proteínas se trasladan al polo positivo es porque su molécula tiene carga negativa y viceversa.
- Especificidad: Cada proteína tiene una función específica que está determinada por su estructura primaria.
- Estabilidad: La proteína debe ser estable en el medio donde desempeñe su función. Para ello, la mayoría de proteínas acuosas crean un núcleo hidrofóbico empaquetado. Está relacionado con su vida media y el recambio proteico.
- Solubilidad: Es necesario solvatar la proteína, lo cual se consigue exponiendo residuos de similar grado de polaridad al medio en la superficie proteica. Se mantiene siempre y cuando los enlaces fuertes y débiles estén presentes. Si se aumenta la temperatura y el pH se pierde la solubilidad.
Desnaturalización
Si en una disolución de proteínas se producen cambios de pH, alteraciones en la concentración, agitación molecular o variaciones bruscas de temperatura, la solubilidad de las proteínas puede verse reducida hasta el punto de producirse su precipitación. Esto se debe a que los enlaces que mantienen la conformación globular se rompen y la proteína adopta la conformación filamentosa. De este modo, la capa de moléculas de agua no recubre completamente a las moléculas proteicas, las cuales tienden a unirse entre sí dando lugar a grandes partículas que precipitan. Además, sus propiedades biocatalizadoras desaparecen al alterarse el centro activo. Las proteínas que se hallan en ese estado no pueden llevar a cabo la actividad para la que fueron diseñadas, en resumen, no son funcionales.
Esta variación de la conformación se denomina desnaturalización. La desnaturalización no afecta a los enlaces peptídicos: al volver a las condiciones normales, puede darse el caso de que la proteína recupere la conformación primitiva, lo que se denomina renaturalización.
Ejemplos de desnaturalización son la leche cortada como consecuencia de la desnaturalización de la caseína, la precipitación de la clara de huevo al desnaturalizarse la ovoalbúmina por efecto del calor o la fijación de un peinado del cabello por efecto de calor sobre las queratinas del pelo.
Determinación de la estabilidad proteica
La estabilidad de una proteína es una medida de la energía que diferencia al estado nativo de otros estados «no nativos» o desnaturalizados. Hablaremos de estabilidad termodinámica cuando podamos hacer la diferencia de energía entre el estado nativo y el desnaturalizado, para lo cual se requiere reversibilidad en el proceso de desnaturalización. Y hablaremos de estabilidad cinética cuando, dado que la proteína desnaturaliza irreversiblemente, solo podemos diferenciar energéticamente la proteína nativa del estado de transición (el estado limitante en el proceso de desnaturalización) que da lugar al estado final. En el caso de las proteínas reversibles, también se puede hablar de estabilidad cinética, puesto que el proceso de desnaturalización también presenta un estado limitante. Se ha demostrado que algunas proteínas reversibles pueden carecer de dicho estado limitante, aunque es un tema aún controvertido en la bibliografía científica.
La determinación de la estabilidad proteica puede realizarse con diversas técnicas. La única de ellas que mide directamente los parámetros energéticos es la calorimetría (normalmente en la modalidad de calorimetría diferencial de barrido). En ésta se mide la cantidad de calor que absorbe una disolución de proteína cuando es calentada, de modo que al aumentar la temperatura se produce una transición entre el estado nativo y el estado desnaturalizado que lleva asociada la absorción de una gran cantidad de calor.
El resto de técnicas miden propiedades de las proteínas que son distintas en el estado nativo y en el estado desplegado. Entre ellas se pueden citar la fluorescencia de triptófanos y tirosinas, el dicroísmo circular, radio hidrodinámico, espectroscopia infrarroja y la resonancia magnética nuclear. Una vez hemos elegido la propiedad que vamos a medir para seguir la desnaturalización de la proteína, podemos distinguir dos modalidades: Aquellas que usan como agente desnaturalizante el incremento de temperatura y aquellas que hacen uso de agentes químicos (como urea, cloruro de guanidinio, tiocianato de guanidinio, alcoholes, etc.). Estas últimas relacionan la concentración del agente utilizado con la energía necesaria para la desnaturalización. Una de las técnicas que han emergido en el estudio de las proteínas es la microscopía de fuerza atómica, ésta técnica es cualitativamente distinta de las demás, puesto que no trabaja con sistemas macroscópicos sino con moléculas individuales. Mide la estabilidad de la proteína a través del trabajo necesario para desnaturalizarla cuando se aplica una fuerza por un extremo mientras se mantiene el otro extremo fijo a una superficie.
La importancia del estudio de la estabilidad proteica está en sus implicaciones biomédicas y biotecnológicas. Así, enfermedades como el Alzheimer o el Parkinson están relacionadas con la formación de amiloides(polímeros de proteínas desnaturalizadas). El tratamiento eficaz de estas enfermedades podría encontrarse en el desarrollo de fármacos que desestabilizaran las formas amiloidogénicas o bien que estabilizaran las formas nativas. Por otro lado, cada vez más proteínas van siendo utilizadas como fármacos. Resulta obvio que los fármacos deben presentar una estabilidad que les dé un alto tiempo de vida cuando están almacenados y un tiempo de vida limitado cuando están realizando su acción en el cuerpo humano.
Su uso en las aplicaciones biotecnológicas se dificulta debido a que pese a su extrema eficacia catalítica presentan una baja estabilidad ya que muchas proteínas de potencial interés apenas mantienen su configuración nativa y funcional por unas horas.
Clasificación
Según su forma
-
- Fibrosas: presentan cadenas polipeptídicas largas y una estructura secundaria atípica. Son insolubles en agua y en disoluciones acuosas. Algunos ejemplos de éstas son queratina, colágeno y fibrina.
-
- Globulares: se caracterizan por doblar sus cadenas en una forma esférica apretada o compacta dejando grupos hidrófobos hacia adentro de la proteína y grupos hidrófilos hacia afuera, lo que hace que sean solubles en disolventes polares como el agua. La mayoría de las enzimas, anticuerpos, algunas hormonas y proteínas de transporte, son ejemplos de proteínas globulares.
-
- Mixtas: posee una parte fibrilar (comúnmente en el centro de la proteína) y otra parte globular (en los extremos).
Según su composición química
1.- Simples
2.- Conjugadas
1.- Simples u holoproteínas: en su hidrólisis solo produce aminoácidos. Ejemplos de estas son la insulina y el colágeno (globulares y fibrosas), albúminas.Proteína simple
2.-Conjugadas o heteroproteínas: estas proteínas contienen cadenas polipeptídicas y un grupo prostético. La porción no aminoacídica se denomina grupo prostético, estos pueden ser un ácido nucleico, un lípido, un azúcar o ion inorgánico. Ejemplo de estas son la mioglobina y los citocromo. Las proteínas conjugados o heteroproteínas se clasifican de acuerdo a la naturaleza de su grupo prostético:
Nucleoproteínas: Su grupo prostético son los ácidos nucleicos.
Lipoproteínas: Su grupo prostético son los fosfolípidos, colesterol y triglicéridos.
Metaloproteínas: El grupo prostético está formado por metales.}
Cromoproteínas: Son proteínas conjugadas por un grupo cromóforo (sustancia coloreada que contiene un metal).
Glucoproteínas: El grupo prostético está formado por los carbohidratos.
Fosfoproteinas: Son proteínas conjugadas con un radical que contiene fosfato, distinto de un ácido nucleico o de un fosfolipido.
Nutrición
Fuentes de proteínas
Las fuentes dietéticas de proteínas incluyen carne, huevos, legumbres, frutos secos, cereales, verduras y productos lácteos tales como queso o yogur. Tanto las fuentes proteínas animales como los vegetales poseen los 20 aminoácidos necesarios para la alimentación humana.
Calidad proteica
Las diferentes proteínas tienen diferentes niveles de familia biológica para el cuerpo humano. Muchos alimentos han sido introducidos para medir la tasa de utilización y retención de proteínas en humanos. Estos incluyen valor biológico, NPU (Net Protein Utilization), NPR (Cociente Proteico Neto) y PDCAAS (Protein Digestibility Corrected Amino Acids Score), la cual fue desarrollado por la FDA mejorando el PER (Protein Efficiency Ratio). Estos métodos examinan qué proteínas son más eficientemente usadas por el organismo.
Reacciones de reconocimiento
- Reacción de Biuret
El reactivo de Biuret está formado por una disolución de sulfato de cobre en medio alcalino, este reconoce el enlace peptídico de las proteínas mediante la formación de un complejo de coordinación entre los iones Cu2+y los pares de electrones no compartidos del nitrógeno que forma parte de los enlaces peptídicos, lo que produce una coloración rojo-violeta.
- Reacción de los aminoácidos azufrados
Se pone de manifiesto por la formación de un precipitado negruzco de sulfuro de plomo. Se basa esta reacción en la separación mediante un álcali, del azufre de los aminoácidos, el cual al reaccionar con una solución de acetato de plomo, forma el sulfuro de plomo.
- Reacción de Millon
Reconoce residuos fenólicos, o sea aquellas proteínas que contengan tirosina. Las proteínas se precipitan por acción de los ácidos inorgánicos fuertes del reactivo, dando un precipitado blanco que se vuelve gradualmente rojo al calentar.
- Reacción xantoproteica
Reconoce grupos aromáticos, o sea aquellas proteínas que contengan tirosina o fenilalanina, con las cuales el ácido nítrico forma compuestos nitrados amarillos
Requerimientos proteicos de la dieta por edad y sexo
Edad(años) | Peso(Kg) | Proteínas(g/día) | |
---|---|---|---|
Lactantes | 0-0.50.5 | 69 | 1314 |
Niños | 1-34-6
7-10 |
1320
28 |
1624
28 |
Hombres | 11-1415-18
19-24 25-50 más de 50 |
4566
72 79 77 |
4559
58 63 63 |
Mujeres | 11-1415-18
19-24 25- 50 más de 50 |
4655
58 63 65 |
4644
46 50 50 |
Food and Nutrition Board, National Academy of
Science/National Research Council 1989
Deficiencia de proteínas
Deficiencia de proteínas en países en vías de desarrollo.
La deficiencia de proteína es una causa importante de enfermedad y muerte en el tercer mundo. La deficiencia de proteína juega una parte en la enfermedad conocida como kwashiorkor. La guerra, la hambruna, la sobrepoblación y otros factores incrementaron la tasa de malnutrición y deficiencia de proteínas. La deficiencia de proteína puede conducir a una inteligencia reducida o retardo mental. La malnutrición proteico calórica afecta a 500 millones de personas y más de 10 millones anualmente. En casos severos el número de células blancas disminuye, de la misma manera se ve reducida drásticamente la habilidad de los leucocitos de combatir una infección.
Deficiencia de proteínas en países desarrollados La deficiencia de proteínas es rara en países desarrollados pero un pequeño número de personas tiene dificultad para obtener suficiente proteína debido a la pobreza. La deficiencia de proteína también puede ocurrir en países desarrollados en personas que están haciendo dieta para perder peso, o en adultos mayores quienes pueden tener una dieta pobre. Las personas convalecientes, recuperándose de cirugía, trauma o enfermedades pueden tener déficit proteico si no incrementan su consumo para soportar el incremento en sus necesidades. Una deficiencia también puede ocurrir si la proteína consumida por una persona está incompleta y falla en proveer todos los aminoácidos esenciales.
Exceso de consumo de proteínas
Como el organismo es incapaz de almacenar las proteínas, el exceso de proteínas es digerido y convertido en azúcares o ácidos grasos. El hígado retira el nitrógeno de los aminoácidos, una manera de que éstos pueden ser consumidos como combustible, y el nitrógeno es incorporado en la urea, la sustancia que es excretada por los riñones. Estos órganos normalmente pueden lidiar con cualquier sobrecarga adicional, pero si existe enfermedad renal, una disminución en la proteína frecuentemente será prescrita.
El exceso en el consumo de proteínas también puede causar la pérdida de calcio corporal, lo cual puede conducir a pérdida de masa ósea a largo plazo. Sin embargo, varios suplementos proteicos vienen suplementados con diferentes cantidades de calcio por ración, de manera que pueden contrarrestar el efecto de la pérdida de calcio.
Algunos médicos sospechan que el consumo excesivo de proteínas está ligado a varios problemas:
- Disfunción hepática debido a incremento de residuos tóxicos.
- Hiperactividad del sistema inmune.
- Pérdida de densidad ósea; la fragilidad de los huesos se debe a que el calcio y la glutamina se filtran de los huesos y el tejido muscular para balancear el incremento en la ingesta de ácidos a partir de la dieta. Este efecto no está presente si el consumo de minerales alcalinos (a partir de frutas y vegetales [los cereales son ácidos como las proteínas; las grasas son neutrales]) es alto.
En tales casos, el consumo de proteínas es anabólico para el hueso. Algunos investigadores piensan que un consumo excesivo de proteínas produce un incremento forzado en la excreción del calcio. Si hay consumo excesivo de proteínas, se piensa que un consumo regular de calcio sería capaz de estabilizar, o inclusive incrementar, la captación de calcio por el intestino delgado, lo cual sería más beneficioso en mujeres mayores.
Las proteínas son frecuentemente causa de alergias y reacciones alérgicas a ciertos alimentos. Esto ocurre porque la estructura de cada forma de proteína es ligeramente diferente. Algunas pueden desencadenar una respuesta a partir del sistema inmune, mientras que otras permanecen perfectamente seguras. Muchas personas son alérgicas a la caseína (la proteína en la leche), al gluten (la proteína en el trigo) y otros granos, a la proteína particular encontrada en el maní o aquellas encontradas en mariscos y otras comidas marinas.
Es extremadamente inusual que una misma persona reaccione adversamente a más de dos tipos diferentes de proteínas, debido a la diversidad entre los tipos de proteínas o aminoácidos. Aparte de eso, las proteínas ayudan a la formación de la masa muscular.
Análisis de proteínas en alimentos
Las proteínas en los alimentos, es un parámetro de importancia desde el punto de vista económico y de la calidad y cualidades organolépticas y nutricionales. Debido a ello su medición está incluida dentro del Análisis Químico Proximal de los alimentos (en el cual se mide principalmente el contenido de humedad, grasa, proteína y cenizas).
El clásico ensayo para medir concentración de proteínas en alimentos es el método de Kjeldahl. Este ensayo determina el nitrógeno total en una muestra. El único componente de la mayoría de los alimentos que contiene nitrógeno son las proteínas (las grasas, los carbohidratos y la fibra dietética no contienen nitrógeno). Si la cantidad de nitrógeno es multiplicada por un factor dependiente del tipo de proteína esperada en el alimento, la cantidad total de proteínas puede ser determinada. En las etiquetas de los alimentos, la proteína es expresada como el nitrógeno multiplicado por 6,25, porque el contenido de nitrógeno promedio de las proteínas es de aproximadamente 16 %. El método de Kjeldahl es usado porque es el método que la AOAC International ha adoptado y por lo tanto es usado por varias agencias alimentarias alrededor del mundo.
Digestión de proteínas
La digestión de las proteínas se inicia típicamente en el estómago, cuando el pepsinógeno es convertido a pepsina por la acción del ácido clorhídrico, y continúa por la acción de la tripsina y la quimotripsina en el intestino. Las proteínas de la dieta son degradadas a péptidos cada vez más pequeños, y éstos hasta aminoácidos y sus derivados, que son absorbidos por el epitelio gastrointestinal. La tasa de absorción de los aminoácidos individuales es altamente dependiente de la fuente de proteínas. Por ejemplo, la digestibilidad de muchos aminoácidos en humanos difiere entre la proteína de la soja y la proteína de la leche y entre proteínas de la leche individuales, como beta-lactoglobulina y caseína. Para las proteínas de la leche, aproximadamente el 50 % de la proteína ingerida se absorbe en el estómago o el yeyuno, y el 90 % se ha absorbido ya cuando los alimentos ingeridos alcanzan el íleon.
Además de su rol en la síntesis de proteínas, los aminoácidos también son una importante fuente nutricional de nitrógeno. Las proteínas, al igual que los carbohidratos, contienen cuatro kilocalorías por gramo, mientras que los lípidos contienen nueve kcal., y los alcoholes, siete kcal. Los aminoácidos pueden ser convertidos en glucosa a través de un proceso llamado gluconeogénesis.
Cronología del estudio de las proteínas
- En 1838, el nombre «Proteína»(del griego proteios, «primero») fue sugerido por Jöns Jacob Berzelius para la sustancia compleja rica en nitrógeno hallada en las células de todos los animales y vegetales.
- 1819-1904 se descubren la mayor parte de los 20 aminoácidos comunes en las proteínas.
- 1864 Felix Hoppe-Seyler cristaliza por primera vez y pone nombre a la hemoglobina.
- 1894 Hermann Emil Fischer propone una analogía «llave y cerradura» para las interacciones enzima-sustrato.
- 1897, Buchner y Buchner demostraron que los extractos exentos de células de levadura pueden fermentar la sacarosa para formar dióxido de carbono y etanol, por lo tanto sentaron las bases de la enzimología.
- 1926 James Batcheller Sumner cristalizó ureasa en forma pura, y demostró que las proteínas pueden tener actividad catalítica de enzimas. Svedberg desarrolló la primera centrifugadora analítica y la utilizó para calcular el peso molecular de la hemoglobina.
- 1933 Arne Wilhelm Kaurin Tiselius introdujo la electroforesis para separar a las proteínas en solución.
- 1934 Bernal y Crowfoot prepararon los primeros patrones detallados de una proteína por difracción de rayos X, obteniendo a partir de cristales de la enzima pepsina.
- 1942 Archer John Porter Martin y Richard L. M. Synge desarrollaron la cromatografía, una técnica que ahora se utiliza para separar proteínas.
- 1951 Linus Carl Pauling Y Robert Corey propusieron la estructura de una conformación helicoidal de una cadena de aminoácidos-la «hélice» α-y la estructura de la «lámina» β, las cuales fueron halladas posteriormente en muchas proteínas.
- 1955 Frederick Sanger determina por primera vez la secuencia de aminoácidos de una proteína (insulina).
- 1956 Vernon Ingram produjo la primera huella proteica y demostró que la diferencia entre la hemoglobina de la anemia falciforme y la hemoglobina normal se debe al cambio de un solo aminoácido.
- 1960 John Kendrew describió la primera estructura tridimensional detallada de una proteína (la mioglobina del esperma de la ballena) con una resolución de 0,2 nm, y Perutz propuso una estructura de resolución mucho más baja para la hemoglobina.
- 1963 Monod, Jacob y Changeux reconocieron que muchas enzimas se regulan por medio de cambios alostéricos en su conformación.
- 1969 Levinthal propone la parádoja sobre el plegamiento que se conoce con su nombre, Paradoja de Levinthal.
- 1972 Christian B. Anfinsen recibe el Nobel de Química por sus trabajos con la ribonucleasa, lo que le llevó a proponer su famosa hipótesis sobre el plegamiento.
- 1995 Marc R. Wilkins acuñó el término (Proteoma) a la totalidad de proteínas presentes en una célula.