ALGEBRA

Productos y cocientes notables

Productos y cocientes notables

 

Productos notables
1.-Producto de la suma por la diferencia de dos cantidades
P r o c e d i m i e n t o

  1. «El producto de la suma por la diferencia de dos cantidades es igual al cuadrado del minuendo menos el cuadrado del sustraendo»
  2. Para elevar un monomio al cuadrado, se eleva el coeficiente al cuadrado y se multiplica el exponente de cada letra por 2.

Escribir por simple inspección, el resultado de:

1- (x+y) (x-y)

Solución:

(x+y) (x-y)=x²-y²

 

2- (m-n) (m+n)

Solución:

(m-n) (m+n)=(m+n) (m-n)=m²-n².

 

3-  (a-x) (x+a)

Solución:

(a-x) (x+a)=(a-x) (a+x)  (cambiando el orden de los sumandos en el segundo parentisis)

⇒ (a-x) (x+a)=(a-x) (a+x)  (cambiando el orden de los factores)

∴ (a-x) (x+a)=a²-x².

 

4- (x²+a²) (a²-x²)

Solución:

(x²+a²) (a²-x²)=(x²)²-(a²)²=x²•²-a²•²;

∴  (x²+a²)(a²-x²)=x­4-a4

 

5- (2a-1) (1+2a)

Solución:

(2a-1) (1+2a)=(2a-1) (2a+1) (cambiando el orden de los sumandos en el segundo parentesis)

⇒ (2a-1) (1+2a)=(2a+1) (2a-1)  (cambiando el orden de los factores);

∴  (2a-1) (1+2a)=(2a)²-1²=4a²-1.

 

 

Productos notables
2.-Producto de la suma por la diferencia de dos cantidades
P r o c e d i m i e n t o

  1. Se agrupa convenientemente (si es necesario, se factoriza por -1)
  2. «El producto de la suma por la diferencia de dos cantidades es igual al cuadrado del minuendo menos el cuadrado del sustraendo»
  3. Para elevar un monomio al cuadrado, se eleva el coeficiente al cuadrado y se multiplica el exponente de cada letra por 2.

Escribir por simple inspección, el resultado de:

1-  (x+y+z)(x+y-z):

Solución:

(x+y+z) (x+y-z)=〈(x+y)+z〉〈(x+y)-z〉  (agrupando combenientemente),

⇒(x+y+z) (x+y-z)=(x+y)²-z²;

∴ (x+y+z) (x+y-z)=x²+2xy+y²-z².

2- (x-y+z) (x+y-z)=〈x-(y-Z)〉〈x+(y-z)〉 (agrupando conbenientemente),

Solución;

⇒(x+y+z) (x+y-z)=x²-(y-z)².

⇒(x+y-z) (x-y+z)=x²-(y²-2yz+z²)  (desarrollando el cuadrado de la diferencia);

∴  (x+y-z) (x-y+z)=x²-y²+2yz-z².   (destruyendo parentisis).

 

3- (x+y+z) (x-y-z)

Solución;

(x+y+z) (x-y-z)=〈x+(y-z)〉〈x-(y+z)〉 (agrupando combenientemente)

⇒ (x+y+z) (x-y-z)=x²-(y+z)²,

⇒ (x+y+z) (x-y-z)=x²-(y²+2yz+z²)    (desarrollando el cuadrado de la suma)

∴  (x+y+z) (x-y-z)=x²-y²-2yz-z²      (destruyendo parentesis)

 

4- m+n+1) (m+n-1)

Solución:

(m+n+1) (m+n-1)=〈(m+n)+1〉〈(m+n)-1〉 (agrupando combenientemente)

⇒(m+n+1) (m+n-1)=(m+n)²-1²;

∴ (m+n+1) (m+n-1)=m²+2mn+n²-1 (desarrollando el cuadrado de la suma)

 

 

Productos notables
3.-Producto de dos binomios de la forma (x + a)(x + b)
P r o c e d i m i e n t o

  1. El desarrollo de los paréntesis da un trinomio
  2. El primer término será el cuadrado del primer término de los paréntesis (igual en ambos)
  3. El segundo término será el producto de la suma de los términos independientes por el primer término común de los paréntesis
  4. El tercer término será el producto de los términos inde pendientes

(x+a) (x+a)=x²+(a+b)x+ab

Escribir por simple inspección, el resultado de:

1- (a+1) (a+2)

Solución:

(a+1) (a+2)=a²+(a+1)a+1×2;

∴ (a+1) (a+2)=a²+3a+2.

 

2- (x+2) (x+4)

Solución:

(x+2) (x+4)=x²+(2+4)x+2×4;

∴ (x+2) (x+4)=x²+6x+8.

 

3- (x+5) (x-2)

Solución:

(x+5) (x-2)=x²+(5-2)x+5x(-2):

∴  (x+5) (x-2)=x²+3x-10.

 

4- (m-6) (m-5)

Solución:

(m-6) (m-5)=m²+(-6-5)m+(-6)x(-5);

∴ (m-6) (m-5)=m²-11m+30.

 

5- (x+7) (x-3)

Solución:

(x+7) (x-3)=x²+(7-3)x+7x(-3):

∴ (x+7) (x-3)=x²+4x-21.

 

6- (x+2) (x-1)

Solución:

(x+2) (x-1)=x²+(2-1)x+2x(-1);

∴ (x+2) (x-1)=x²+x-2

 

7- (x-3) (x-1)

Solución:

(x-3) (x-1)=x²+(-3-1)x+(-3)x(-1);

∴ (x-3) (x-1)=x²-4x-3

Productos notables
M i s c e l á n e a

1- (X+2)²

Soluciones:

(x+2)²=x²+2x(2)+2²   (desarrollando el cuadrado de la suma),

∴  (x+2)²=x²+4x+4

2- (x+2) (x+3)

Solución:

(x+2) (x+3)=x²+(2+3)x+(2)(3),

∴  (x+2) (x+3)=x²+5x+6.

3- (x+1) (x-1)

Solucines:

(x+1) (x-1)=x²-1²   (desarrolando el producto de la suma por la diferencia de dos cantidades)

∴  (+1) (x-1)= x²-1

4- (x-1)²

Solución:

(x-1)²=x²-2x(1)+1²   (desarrollando el cuadrado de la diferencia de dos cantidades)

∴  (x-1)²=x²-2x+1

5- (a+b-1) (a+b+1)

Solución:

(a+b-1) (a+b+1)〉〈(a+b)-1〉〈(a+b) +1)〉  (agrupando combenientemente)

⇒ (a+b-1) (a+b+1)=(a+b)²-1²    (desarrollando la suma por la diferencia de dos cantidades)

∴  (a+b-1) 8a+b+1)=a²+2a+b²-1  (desarrollando el cuadrado del binomio).

6- (1+b)³

Solución:

(1+b)³=1³+3(1²)b+3(1)b²+b³  Desarrollando el cubo de un binomio);

∴  (1+b)³=1³+3b+3b²+b³

Cocientes notables

 

 

admin

Compartir
Publicado por
admin

Entradas recientes

Tejidos vegetales

Tejido vegetal. Cuando hablamos de los tipos y características de los tejidos de las plantas…

1 mes hace

Cáncer metastásico

El cáncer que se disemina desde el lugar donde se formó hasta una parte del…

3 meses hace

La Edad Media

La Edad Media es el período de la historia comprendido entre la caída del Imperio Romano…

3 meses hace

La cultura medieval

La cultura medieval. Se entiende por cultura medieval al conjunto de manifestaciones sociales, políticas, económicas…

3 meses hace

La geografía como ciencia

La Geografía como ciencia. La geografía aparece como ciencia en el siglo XIX, cuando Alexander…

5 meses hace

Prehistoria

La Prehistoria. Se conoce como prehistoria al periodo de la historia queabarca desde la aparición…

5 meses hace