Productos y cocientes notables
Productos notables
1.-Producto de la suma por la diferencia de dos cantidades
P r o c e d i m i e n t o
- «El producto de la suma por la diferencia de dos cantidades es igual al cuadrado del minuendo menos el cuadrado del sustraendo»
- Para elevar un monomio al cuadrado, se eleva el coeficiente al cuadrado y se multiplica el exponente de cada letra por 2.
Escribir por simple inspección, el resultado de:
1- (x+y) (x-y)
Solución:
(x+y) (x-y)=x²-y²
2- (m-n) (m+n)
Solución:
(m-n) (m+n)=(m+n) (m-n)=m²-n².
3- (a-x) (x+a)
Solución:
(a-x) (x+a)=(a-x) (a+x) (cambiando el orden de los sumandos en el segundo parentisis)
⇒ (a-x) (x+a)=(a-x) (a+x) (cambiando el orden de los factores)
∴ (a-x) (x+a)=a²-x².
4- (x²+a²) (a²-x²)
Solución:
(x²+a²) (a²-x²)=(x²)²-(a²)²=x²•²-a²•²;
∴ (x²+a²)(a²-x²)=x4-a4
5- (2a-1) (1+2a)
Solución:
(2a-1) (1+2a)=(2a-1) (2a+1) (cambiando el orden de los sumandos en el segundo parentesis)
⇒ (2a-1) (1+2a)=(2a+1) (2a-1) (cambiando el orden de los factores);
∴ (2a-1) (1+2a)=(2a)²-1²=4a²-1.
Productos notables
2.-Producto de la suma por la diferencia de dos cantidades
P r o c e d i m i e n t o
- Se agrupa convenientemente (si es necesario, se factoriza por -1)
- «El producto de la suma por la diferencia de dos cantidades es igual al cuadrado del minuendo menos el cuadrado del sustraendo»
- Para elevar un monomio al cuadrado, se eleva el coeficiente al cuadrado y se multiplica el exponente de cada letra por 2.
Escribir por simple inspección, el resultado de:
1- (x+y+z)(x+y-z):
Solución:
(x+y+z) (x+y-z)=〈(x+y)+z〉〈(x+y)-z〉 (agrupando combenientemente),
⇒(x+y+z) (x+y-z)=(x+y)²-z²;
∴ (x+y+z) (x+y-z)=x²+2xy+y²-z².
2- (x-y+z) (x+y-z)=〈x-(y-Z)〉〈x+(y-z)〉 (agrupando conbenientemente),
Solución;
⇒(x+y+z) (x+y-z)=x²-(y-z)².
⇒(x+y-z) (x-y+z)=x²-(y²-2yz+z²) (desarrollando el cuadrado de la diferencia);
∴ (x+y-z) (x-y+z)=x²-y²+2yz-z². (destruyendo parentisis).
3- (x+y+z) (x-y-z)
Solución;
(x+y+z) (x-y-z)=〈x+(y-z)〉〈x-(y+z)〉 (agrupando combenientemente)
⇒ (x+y+z) (x-y-z)=x²-(y+z)²,
⇒ (x+y+z) (x-y-z)=x²-(y²+2yz+z²) (desarrollando el cuadrado de la suma)
∴ (x+y+z) (x-y-z)=x²-y²-2yz-z² (destruyendo parentesis)
4- m+n+1) (m+n-1)
Solución:
(m+n+1) (m+n-1)=〈(m+n)+1〉〈(m+n)-1〉 (agrupando combenientemente)
⇒(m+n+1) (m+n-1)=(m+n)²-1²;
∴ (m+n+1) (m+n-1)=m²+2mn+n²-1 (desarrollando el cuadrado de la suma)
Productos notables
3.-Producto de dos binomios de la forma (x + a)(x + b)
P r o c e d i m i e n t o
- El desarrollo de los paréntesis da un trinomio
- El primer término será el cuadrado del primer término de los paréntesis (igual en ambos)
- El segundo término será el producto de la suma de los términos independientes por el primer término común de los paréntesis
- El tercer término será el producto de los términos inde pendientes
(x+a) (x+a)=x²+(a+b)x+ab
Escribir por simple inspección, el resultado de:
1- (a+1) (a+2)
Solución:
(a+1) (a+2)=a²+(a+1)a+1×2;
∴ (a+1) (a+2)=a²+3a+2.
2- (x+2) (x+4)
Solución:
(x+2) (x+4)=x²+(2+4)x+2×4;
∴ (x+2) (x+4)=x²+6x+8.
3- (x+5) (x-2)
Solución:
(x+5) (x-2)=x²+(5-2)x+5x(-2):
∴ (x+5) (x-2)=x²+3x-10.
4- (m-6) (m-5)
Solución:
(m-6) (m-5)=m²+(-6-5)m+(-6)x(-5);
∴ (m-6) (m-5)=m²-11m+30.
5- (x+7) (x-3)
Solución:
(x+7) (x-3)=x²+(7-3)x+7x(-3):
∴ (x+7) (x-3)=x²+4x-21.
6- (x+2) (x-1)
Solución:
(x+2) (x-1)=x²+(2-1)x+2x(-1);
∴ (x+2) (x-1)=x²+x-2
7- (x-3) (x-1)
Solución:
(x-3) (x-1)=x²+(-3-1)x+(-3)x(-1);
∴ (x-3) (x-1)=x²-4x-3
Productos notables
M i s c e l á n e a
1- (X+2)²
Soluciones:
(x+2)²=x²+2x(2)+2² (desarrollando el cuadrado de la suma),
∴ (x+2)²=x²+4x+4
2- (x+2) (x+3)
Solución:
(x+2) (x+3)=x²+(2+3)x+(2)(3),
∴ (x+2) (x+3)=x²+5x+6.
3- (x+1) (x-1)
Solucines:
(x+1) (x-1)=x²-1² (desarrolando el producto de la suma por la diferencia de dos cantidades)
∴ (+1) (x-1)= x²-1
4- (x-1)²
Solución:
(x-1)²=x²-2x(1)+1² (desarrollando el cuadrado de la diferencia de dos cantidades)
∴ (x-1)²=x²-2x+1
5- (a+b-1) (a+b+1)
Solución:
(a+b-1) (a+b+1)〉〈(a+b)-1〉〈(a+b) +1)〉 (agrupando combenientemente)
⇒ (a+b-1) (a+b+1)=(a+b)²-1² (desarrollando la suma por la diferencia de dos cantidades)
∴ (a+b-1) 8a+b+1)=a²+2a+b²-1 (desarrollando el cuadrado del binomio).
6- (1+b)³
Solución:
(1+b)³=1³+3(1²)b+3(1)b²+b³ Desarrollando el cubo de un binomio);
∴ (1+b)³=1³+3b+3b²+b³
Cocientes notables