La Nebulosa del Anillo. Crédito: The Hubble Heritage Team (AURA/STScI/NASA). Esto se debe a que en el espectro de las nebulosas planetarias predominan las líneas de emisión, como en los gases, al contrario que en las nebulosas formadas por estrellas, que presentan un espectro continúo. Huggins identificó una línea de Balmer del hidrógeno (en concreto H , correspondiente al color cian), aunque también aparecían otras líneas mucho más brillantes, como la correspondiente a 500,7 nanómetros, que los astrónomos no lograban identificar con ningún elemento. Para explicar la emisión de estas líneas, se sugirió la existencia de un nuevo elemento denominado nebulio. La verdadera naturaleza de estas líneas no se descubrió hasta pasados más de sesenta años desde las observaciones de Huggins, con la aparición de la mecánica cuántica; fue Ira Sprague Bowen, en 1928, quien dedujo que estas líneas eran causadas por átomos de oxígeno y nitrógeno ionizado, refutando así la teoría del nebulio. Bowen demostró que en gases de densidades extremadamente bajas los electrones pueden poblar niveles de energía metaestables excitados, que en gases de densidades más elevadas se des excitarían rápidamente debido a las colisiones existentes entre átomos. Las transiciones de los electrones desde estos niveles a otros de menor energía en los átomos de oxígeno y nitrógeno ionizado, como O2+, O+ o N+, producen la emisión de las líneas que Huggins no supo identificar, incluida la correspondiente a 500,7 nanómetros. Estas líneas espectrales reciben el nombre de líneas prohibidas, y solamente aparecen en gases de muy baja densidad, por lo que se deduce que las nebulosas planetarias están formadas de gas altamente enrarecido (baja densidad). Los espectros en la banda de luz visible de las nebulosas planetarias son de hecho tan diferentes de los de otros objetos celestes que se usan para determinar la existencia de una nebulosa planetaria aunque su tamaño aparente sea tan pequeño que no permita su identificación mediante fotometría. En concreto, las líneas del oxígeno doblemente ionizado, O2+, a 500,7 y a 495,9 nanómetros y la línea de Balmer H , aun cuando están presentes en espectros de otros objetos como novas y supernovas, en ningún caso tienen tanta intensidad como en los espectros de las nebulosas planetarias. Hacia finales del siglo XX, las mejoras tecnológicas ayudaron en el estudio y comprensión de las nebulosas plantarías. Los telescopios espaciales permitieron a los astrónomos estudiar la luz emitida más allá del espectro visible, la cual no puede ser detectada desde los observatorios situados en tierra, ya que sólo las ondas de radio y la luz del espectro visible atraviesan la atmósfera sin sufrir perturbaciones. Los estudios realizados en el infrarrojo y el ultravioleta revelan mucha más información de las nebulosas planetarias, como su temperatura, su densidad o las abundancias de los distintoselementos. La tecnología CCD permitió medir de una manera mucho más precisa las líneas espectrales más débiles. El telescopio espacial Hubble mostró que, aunque muchas nebulosas parecen a priori poseer una estructura muy básica vistas desde los observatorios terrestres, la gran resolución óptica de los telescopios situados sobre la atmósfera terrestre revela morfologías que pueden llegar a ser extremadamente complejas.
Formación y evolución
Origen
Diagrama de Hertzsprung-Russell. Las estrellas están en la secuencia principal la mayor parte de su existencia. Finalmente, cuando el hidrógeno comienza a escasear, se convierten en gigantes rojas (arriba-derecha). Por último, si la estrella se encuentra entre 1 y 8 masas solares aproximadamente, se convierte en enana blanca (abajo), con un radio muy pequeño, y genera una nebulosa planetaria. Las nebulosas planetarias se forman cuando una estrella que posee entre 0,8 y 8 masas solares (M⊙) agota su combustible nuclear. Por encima del límite de 8 M⊙ la estrella explotaría originando una supernova. Durante la mayor parte de sus vidas las estrellas se encuentran brillando debido a las reacciones de fusión nuclear que tienen lugar en el núcleo estelar. Esto permite que la estrella se encuentre en equilibrio hidrostático, pues la fuerza que la gravedad ejerce hacia el centro de la estrella intentando comprimirla es compensada por la suma de las presiones hidrostática y de radiación, que actúan intentando expandir el sistema. Las estrellas que cumplen esto están situadas en la zona de secuencia principal en el diagrama Hertzsprung-Russell, donde se encuentran la mayor parte de las mismas. Las estrellas de masas medias y bajas, como las que forman nebulosas planetarias, permanecen en la secuencia principal durante varios miles de millones de años, consumiendo hidrógeno y produciendo helio que se va acumulando en su núcleo, el cual no tiene suficiente temperatura para provocar la fusión del helio, quedando éste inerte. Progresivamente se va acumulando helio hasta que la presión de radiación en el núcleo no es suficiente para compensar la fuerza gravitatoria generada por la masa de la estrella, por lo que aquél se comprime. Esta compresión genera calor que provoca una aceleración de la fusión del hidrógeno de las capas exteriores, que se expanden. Como la superficie de la misma aumenta, la energía que produce la estrella se difunde sobre un área más amplia, resultando en un enfriamiento de la temperatura superficial y por tanto en un enrojecimiento de la estrella. Se dice entonces que la estrella entra en la fase de gigante roja.
Simulación de la formación de una nebulosa planetaria.: NASA, ESA, y J. Gitlin (STScI). El núcleo, compuesto totalmente por helio, continúa comprimiéndose y calentándose en ausencia de reacciones nucleares, hasta se alcanza la temperatura que posibilita la fusión del helio en carbono y oxígeno(unos 80-90 millones de kelvin), volviendo de nuevo al equilibrio hidrostático. Pronto se formará un núcleo inerte de carbono y oxígeno rodeado por una capa de helio y otra de hidrógeno, ambas en combustión. Este estadio de las gigantes rojas se denomina rama asintótica gigante. Las reacciones de fusión del helio son extremadamente sensibles a la temperatura, siendo su proporcionalidad del orden de T40, en temperaturas relativamente bajas. La estrella entonces se vuelve muy inestable debido a la influencia que pueden llegar a tener las variaciones de temperatura; un aumento de sólo el 2% en la temperatura de la estrella doblaría el ritmo al que se producen estas reacciones, liberándose una gran cantidad de energía que aumentaría la temperatura de la estrella, por lo que provocaría que la capa de helio en combustión se expandiera para enfriarse rápidamente. Esto da lugar a violentas pulsaciones, que finalmente adquieren la intensidad suficiente como para expulsar por completo la atmósfera estelar al espacio. Los gases eyectados forman una nube de material alrededor del ahora expuesto núcleo de la estrella. A medida que la atmósfera se desplaza alejándose de la estrella, se exponen cada vez capas más profundas y calientes del núcleo. Cuando la superficie expuesta alcanza una temperatura de 35 000 K, se emiten suficientes fotones ultravioletas como para ionizar la atmósfera eyectada, haciéndola brillar. La nube se ha convertido en una nebulosa planetaria.
Fase de nebulosa planetaria
Características
Morfología
Las nebulosas planetarias desempeñan un papel fundamental en la evolución galáctica. El universo primitivo consistía solamente en hidrógeno y helio, pero con el paso del tiempo las estrellas han ido creando en su núcleo elementos más pesados a través de la fusión nuclear. De este modo, los gases que conforman la nebulosa planetaria contienen una importante proporción de estos elementos más pesados que el helio llamados «metales», como el carbono, el nitrógeno, o el oxígeno, contribuyendo a enriquecer el medio interestelar a medida que la nebulosa planetaria se mezcla con el mismo. Las generaciones posteriores de estrellas tendrán por tanto una mayor metalicidad, es decir, una mayor concentración de estos elementos pesados. Aunque su proporción con respecto al total de la estrella es todavía muy pequeña, tienen un efecto muy importante en su evolución. A las estrellas formadas al inicio del universo y que poseen una baja cantidad de estos elementos pesados se las engloba dentro de la llamada Población I de estrellas, mientras que a las estrellas más jóvenes con alta metalicidad se las engloba dentro de la Población II. Por lo general, las estrellas de la Población I se encuentran esparcidas por el disco galáctico, mientras que las de la Población II están situadas en el bulbo galáctico y en elhalo.
NGC 2818, una nebulosa planetaria en un cúmulo abierto. Crédito: NASA, ESA, y Hubble Heritage Team (STScI/AURA). Se conocen alrededor de 3.000 nebulosas planetarias en nuestra galaxia. Se trata de un número pequeño si se lo compara con el número total de estrellas; existe aproximadamente una nebulosa planetaria por cada 60 millones de ellas. Esto es debido a su corto tiempo de vida en comparación con las estrellas. Se estima que cada año se generan alrededor de tres nuevas nebulosas planetarias. Generalmente se encuentran situadas en el plano de la Vía Láctea, siendo más abundantes cerca del centro galáctico. Regularmente se detectan nebulosas planetarias en cúmulos globulares, como Messier 15, Messier 22, NGC 6441, y Palomar 6. Sin embargo, en los cúmulos abiertos son mucho menos numerosas, puesto que estos cúmulos poseen muchas menos estrellas que los globulares, y como están poco ligados gravitacionalmente sus miembros se dispersan en cuestión de 100 a 600 millones de años, tiempo similar al necesario para que la fase de nebulosa planetaria se lleve a cabo. Se conocen algunas nebulosas planetarias situadas en cúmulos abiertos, como es el caso de NGC 2348y NGC 2818. El estudio de las nebulosas planetarias en cúmulos abiertos permite determinar con mayor precisión el límite de masa entre las estrellas progenitoras de las enanas blancas y las estrellas de neutrones, situado entre 6-8 masas solares.
La Nebulosa de la Araña Roja, una nebulosa bipolar con una estrella central muy caliente. Un problema en el estudio de las nebulosas planetarias es que, en la mayoría de los casos, sus distancias están muy mal determinadas. Solamente para las nebulosas planetarias más cercanas es posible determinar su distancia mediante la medición de la paralaje de su expansión, esto es, observando su movimiento aparente sobre la bóveda celeste. Esta medida revela la expansión en la perpendicular de la línea de visión, mientras que con las medidas del efecto Doppler se obtiene la velocidad de expansión en la línea de visión. Comparando estas velocidades se puede determinar la distancia a la nebulosa. Otro problema es la diversidad de formas. Generalmente se acepta que las interacciones entre material expandiéndose a diferentes velocidades es la causa de la mayoría de las formas que se observan. Sin embargo, algunos astrónomos creen que los sistemas estelares binarios podrían ser los responsables de, al menos, las nebulosas planetarias más complejas. Otras formas complicadas podrían deberse a los intensos campos magnéticos. En cuanto a la metalicidad de las nebulosas planetarias, existen dos maneras diferentes de determinarla mediante líneas espectrales; con líneas de recombinación y con líneas excitadas por colisión, aunque en ocasiones las discrepancias entre ambos métodos son bastante significativas. Algunos astrónomos creen que esto se debe a la existencia de pequeñas fluctuaciones de temperatura en la nebulosa planetaria; otros apuntan a que las discrepancias son demasiado elevadas como para ser explicadas mediante efectos térmicos, y postulan la existencia de regiones frías que contendrían muy poco hidrógeno. Sin embargo, estas regiones todavía no han sido observadas.
Guardar
Guardar
La Ciencia Bioquímica La bioquímica es la química de la vida, es decir, la rama…
La biología moderna. La teoría de Darwin es el evento más importante en la historia…
Revolución científica. La Revolución Científica transformó para siempre las formas de entender la naturaleza y…
Historia y Evolución de la Biología. La biología es la ciencia que estudia los seres vivos.…
Tejido vegetal. Cuando hablamos de los tipos y características de los tejidos de las plantas…
El cáncer que se disemina desde el lugar donde se formó hasta una parte del…