Tiene forma ligeramente elipsoidal, con un diámetro ecuatorial de 6794 km y polar de 6750 km. Medidas micrométricas muy precisas han mostrado un achatamiento de 0,01, tres veces mayor que el de la Tierra. A causa de este achatamiento, el eje de rotación está afectado por una lenta precesión debida a la atracción del Sol sobre el abultamiento ecuatorial del planeta. La precesión lunar, que en la Tierra es dos veces mayor que la solar, no tiene su equivalente en Marte. Con este diámetro, su volumen es de 15 centésimas el terrestre y su masa solamente de 11 centésimas. En consecuencia, la densidad es inferior a la de la Tierra: 3,94 en relación con el agua. Un cuerpo transportado a Marte pesaría 1/3 de su peso en la Tierra, debido a la poca fuerza gravitatoria.
Traslación y rotación
Se conoce con exactitud lo que tarda la rotación de Marte debido a que las manchas que se observan en su superficie, oscuras y bien delimitadas, son excelentes puntos de referencia. Fueron observadas por primera vez en 1659 por Christiaan Huygens que asignó a su rotación la duración de un día. En 1666,Giovanni Cassini la fijó en 24 h 40 min, valor muy aproximado al verdadero. Trescientos años de observaciones de Marte han dado por resultado establecer el valor de 24 h 37 min 22,7 s para el día sideral (el periodo de rotación de la Tierra es de 23 h 56 min 4,1 s). Marte rota en sentido anti horario, al igual que la Tierra. De la duración del día sideral se deduce que el día solar tiene en Marte una duración de 24 h 39 min 35,3 s. El día solar medio o tiempo entre dos pasos consecutivos del Sol medio por el meridiano del lugar, dura 24 h 41 min 18,6 s. El día solar en Marte tiene, igual que el de la Tierra, una duración variable. No obstante, en Marte la variación es mayor por su elevada excentricidad. Para mayor comodidad operativa, los responsables de las misiones norteamericanas de exploración de Marte mediante sondas robóticas han decidido unilateralmente dar al día marciano el nombre de sol, pese a tener otros significados en otros idiomas («suelo» en francés; o el nombre de nuestra estrella en español).
El año marciano dura 687 días terrestres. Un calendario marciano podría constar de dos años de 668 días por cada tres años de 669 días.
Los polos de Marte están señalados por dos casquetes polares de color blanco deslumbrante, que han facilitado mucho la determinación del ángulo que forma el ecuador del planeta con el plano de su órbita, ángulo equivalente para Marte a la oblicuidad de la eclíptica en la Tierra. Las medidas hechas por Camichel sobre clichés obtenidos en el observatorio francés del Pic du Midi, han dado para este ángulo 24° 48’. Desde la exploración espacial se acepta un valor de 25,19°, un poco mayor que la oblicuidad de la eclíptica (23° 27’), motivo por el cual, Marte tiene períodos estacionales similares a los de la Tierra, aunque sus estaciones son más largas, dado que un año marciano es casi dos veces más largo que un año terrestre.
La ciencia que estudia la superficie de Marte se llama aerografía (no confundir con aerografía), nombre que proviene de Ares(dios de la guerra entre los griegos). Marte es un planeta notablemente más pequeño que la Tierra. Sus principales características, en proporción con las del globo terrestre, son las siguientes: diámetro 53 %, superficie 28 %, masa 11 %. Como los océanos cubren alrededor del 70 % de la superficie terrestre y Marte carece de mares, ambos planetas poseen aproximadamente la misma cantidad de superficie pisable. Gracias a las imágenes tomadas por la cámara HiRISE, que viaja a bordo de la Mars Reconaissance Orbiter, en órbita del planeta rojo desde marzo de 2006, se han puesto de manifiesto muchas de las principales características morfológicas de su superficie. La superficie de Marte presenta características morfológicas tanto de la Tierra como de la Luna: cráteres de impacto, campos de lava, volcanes, cauces secos de ríos y dunas de arena. Su composición es fundamentalmente basalto volcánico con un alto contenido en óxidos de hierro que proporcionan el característico color rojo de la superficie. Por su naturaleza, se asemeja a la limonita, óxido de hierro muy hidratado. Así como en las cortezas de la Tierra y de la Luna predominan los silicatos y los aluminatos, en el suelo de Marte son preponderantes los ferrosilicatos. Sus tres constituyentes principales son, por orden de abundancia, el oxígeno, el silicio y el hierro. Contiene: 20,8 % de sílice, 13,5 % de hierro, 5 % de aluminio, 3,8 % de calcio, y también titanio y otros componentes menores.
Marte es uno de los planetas mas interesantes para ser observado. Se trata de un cuerpo de menor tamaño que la Tierra, posee dos pequeñas y opacas lunas orbitando muy cerca de su superficie. A la hora de observarlo hay que asegurarse de que se trate de una buena época para ello. Las fechas mas convenientes son las próximas a su oposición. Al igual que todos los demás planetas exteriores, en la oposición se encuentran en el mejor momento de para ser observados, su tamaño y brillo son máximos y su distancia a la Tierra es mínima (no siempre coinciden al mismo tiempo estas todas estas características)
En el momento de la oposición el sistema Sol-Tierra-Planeta forma una línea recta. Es en las cercanías de esta fecha donde Marte presenta todas sus impresionantes características. Las mas observadas son las del terreno, zonas mas brillantes y otras mas oscuras asociadas a diferentes zonas en la superficie de Marte. Con un telescopio de pequeño ya son observables. Filtros de colores pueden ayudar a aumentar el contraste entre las direrentes zonas.
Una animación interactiva con la rotación de Marte y las diferentes zonas marcadas puede accederse haciendo click en el gráfico superior.
Marte posee un periodo de rotación parecido al de la Tierra, por tanto si se lo observa durante algún tiempo se pueden notar las características superficiales mas prominentes. Para esto debe saberse con anterioridad la longitud central de Marte (el paralelo que domina el centro del disco marciano), para poder ubicar esa longitud en un mapa y saber que se esta observando para poder identificar diferentes zonas. Es posible también observar los casquetes polares como zonas mas brillantes.
El tamaño aparente de Marte varía mucho entre el máximo y el mínimo posible. Las oposiciones de Marte se dan cada año y medio aproximadamente. Otra característica de Marte es su activa atmósfera. No es muy densa, pero en ocasiones (reservadas para telescopio mayores) es posible ver con la asistencia de filtros de colores (azul, por ejemplo) formaciones de nubes sobre la superficie marciana.
Un buen momento para la observación del planeta es cuando la luz crepuscular se hace presente. Esto amortiza el brillo del Marte e incrementa el contraste entre las diferentes zonas.
La órbita de Marte es mas excéntrica que la de la Tierra, por este motivo presenta estaciones con características mas marcadas. El verano en el sur tiene lugar cuando Marte se encuentra en el perihelio unos 42 millones de kilómetros mas cerca del Sol que en su afelio. El verano en el sur es así mas cálido y breve que dicha estación en el hemisferio norte, y su invierno mas largo y frío. Estas características afectan a los casquetes polares y provocan enormes tormentas de polvo que pueden envolver todo el planeta.
Marte es un planeta rocoso, con una corteza, un manto y un núcleo. Se cree que la capa rígida superior tiene unos 30 kilómetros de grosor y el manto puede extenderse unos 2400 kilómetros. Estas capas están mas frías que las de la Tierra, por tal motivo no existen placas tectónicas que modifiquen la superficie. El núcleo metálico de unos 2000 kilómetros de diámetro puede ser totalmente sólido, lo que explicaría la ausencia de un campo magnético alrededor del planeta.
Aun así la superficie de Marte posee enormes estructuras geológicas, como una de las montañas mas importantes del Sistema Solar, el Olimpus Mons, de una altura de 25 kilómetros y una base de 550 kilómetros de diámetro. También posee un enorme acantilado denominado Valles Marineris, de 4000 kilómetros de largo y de hasta 7 kilómetros de profundidad. Marte posee indicios de haber tenido en épocas pasadas agua liquida en su superficie, formado mares y ríos.
El planeta posee dos pequeñas lunas: Fobos y Deimos. Fobos es de solo 27 kilómetros de diámetro y al igual que Deimos tiene la apariencia de un asteroide. Deimos, el mas exterior de las lunas marcianas mide solo 10 x 11 x 10 kilómetros. La cercanía a la superficie de Marte de las lunas produce interesantes efectos.
Los satélites de Marte se hallan tan cerca del planeta (en comparación con su tamaño) que hay una considerable diferencia en la distancia desde el centro de Marte comparada con la distancia desde la superficie.
Ambas lunas (especialmente Fobos) están mucho más cerca cuando son vistos en el cenit que cuando se los ve en el horizonte. Y no solo eso, solo es posible ver a Deimos si el observador sobre la superficie de Marte se halla mas allá de los 6,5 grados desde los polos (83.5º de latitud), y a Fobos, que se halla mas oculto por la visual del horizonte, no puede ser visto mas allá de los 70º de latitud norte o sur.
También el breve periodo de revolución de ambos satélites produce interesantes efectos para un observado sobre la superficie de Marte. Deimos completa su rotación de oeste a este en 30,3 horas, mientras que el periodo de rotación de Marte es de 24.7 horas. Marte a su vez alcanza a Deimos y lo deja atrás, pero por muy poco. Deimos, al ser alcanzado, sale por el este y se pone en el oeste, pero lo hace muy lentamente porque su velocidad se aproxima a la de Marte. Deimos tarda 65.57 horas para pasar de la salida a la puesta (2.66 días marcianos, 2.73 días terrestres)
El periodo de rotación de Deimos con respecto al Sol es de 30.3 horas (y siempre muestra la misma vara a Marte). Esto significa que experimenta todo un ciclo de fases entre la nueva y la llena en 30.3 horas. Así, durante el intervalo en el que se encuentra sobre el horizonte marciano pasa por su ciclo de fases dos veces y un poco mas. Si Deimos fuese suficientemente grande para apreciar el cambio de fases sería realmente un espectáculo muy interesante, pero solamente presenta cambios de brillo.
La situación de Fobos es también muy interesante. Completa su periodo de revolución en 7.65 horas, en solo tres décimas del día marciano. Orbita con mucha mas rapidez que Marte sobre su eje. Es el único satélite conocido del Sistema Solar que supera en tal medida la velocidad del planeta que lo contiene. El resultado para un observador en la superficie es que Fobos sale por el oeste y se pone por el este, completando un ciclo de salida y puesta en 5,55 horas. Al hacerlo pasa por cuatro quintos de sus fases, y es eclipsado si la fase incluye la llena, y borrado por la luz solar si incluye la fase nueva.
El tamaño aparente de los satélites observados desde la superficie de Marte varia entre los 13.3 y 11.2 minutos de arco para Fobos, y los 2.0 y 1.6 minutos de arco para Deimos (0.16 y 0.003 veces la superficie aparente de nuestra Luna observada desde la Tierra, correspondientemente) El brillo ronda las 0.06 y 0.001 vececs el brillo de la Luna llena para Fobos y Deimos (magnitud -9.6 para Fobos, y -5.1 para Deimos)
El tamaño aparente de Marte visto desde sus satélites es realmente grande: 2426 minutos de arco desde Fobos (78.3 veces el tamaño de nuestra Luna vista desde a Tierra) y 982 minuntos de arco desde Deimos (31.7 veces el tamaño de la Luna) Con esto, Marte brilla 5700 veces mas que la Luina llena cuando es visto desde Fobos, y 940 veces mas cuando se lo observa desde Deimos.
Geografía
Ionosfera marciana La atmósfera de Marte es muy tenue, con una presión superficial de solo 7 a 9 hPa frente a los 1013 hPa de la atmósfera terrestre. Esto representa una centésima parte de la terrestre. La presión atmosférica varía considerablemente con la altitud, desde casi 9 hPa en las depresiones más profundas, hasta 1 hPa en la cima del Monte Olimpo. Su composición es fundamentalmente: dióxido de carbono (95,3 %) con un 2,7 % de nitrógeno, 1,6 % de argón y trazas de oxígeno molecular(0,15 %) monóxido de carbono (0,07 %) y vapor de agua (0,03 %). La proporción de otros elementos es ínfima y escapa su dosificación a la sensibilidad de los instrumentos hasta ahora empleados. El contenido de ozono es 1000 veces menor que en la Tierra, por lo que esta capa, que se encuentra a 40 km de altura, es incapaz de bloquear la radiación ultravioleta. La atmósfera es lo bastante densa como para albergar vientos muy fuertes y grandes tormentas de polvo que, en ocasiones, pueden abarcar el planeta entero durante meses. Este viento es el responsable de la existencia de dunas de arena en los desiertos marcianos. Las nubes pueden presentarse en tres colores: blancas, amarillas y azules. Las nubes blancas son de vapor de agua condensada o de dióxido de carbono en latitudes polares. Las amarillas, de naturaleza pilosa, son el resultado de las tormentas de polvo y están compuestas por partículas de tamaño en torno a 1 micra. La bóveda celeste marciana es de un suave color rosa salmón debido a la dispersión de la luz por los granos de polvo muy finos procedentes del suelo ferruginoso. En invierno, en las latitudes medias, el vapor de agua se condensa en la atmósfera y forma nubes ligeras de finísimos cristales de hielo. En las latitudes extremas, la condensación del anhídrido carbónico forma otras nubes que constan de cristales de nieve carbónica. La débil atmósfera marciana produce un efecto invernadero que aumenta la temperatura superficial unos 5 grados; mucho menos que lo observado en Venus y en la Tierra. La atmósfera marciana ha sufrido un proceso de evolución considerable por lo que es una atmósfera de segunda generación. La atmósfera primigenia, formada poco después que el planeta, ha dado paso a otra, cuyos elementos provienen de la actividad geológica del planeta. Así, el vulcanismo vierte a la atmósfera determinados gases, entre los cuales predominan el gas carbónico y el vapor de agua. El primero queda en la atmósfera, en tanto que el segundo tiende a congelarse en el suelo frío. El nitrógeno y el oxígeno no son producidos en Marte más que en ínfimas proporciones. Por el contrario, el argón es relativamente abundante en la atmósfera marciana. Esto no es de extrañar: los elementos ligeros de la atmósfera (hidrógeno, helio, etc.) son los que más fácilmente se escapan en el espacio interplanetario dado que sus átomos y moléculas alcanzan la velocidad de escape; los gases más pesados acaban por combinarse con los elementos del suelo; el argón, aunque ligero, es lo bastante pesado como para que su escape hidrodinámico hacia el espacio interplanetario sea difícil y, por otra parte, al ser un gas neutro o inerte, no se combina con los otros elementos por lo que va acumulándose con el tiempo.
En los inicios de su historia, Marte pudo haber sido muy parecido a la Tierra. Al igual que en nuestro planeta la mayoría de su dióxido de carbono se utilizó para formar carbonatos en las rocas. Pero al carecer de una tectónica de placas es incapaz de reciclar hacia la atmósfera nada de este dióxido de carbono y así no puede mantener un efecto invernadero significativo. No hay cinturón de radiación, aunque sí hay una débil ionosfera que tiene su máxima densidad electrónica a 130 km de altura. Aunque no hay evidencia de actividad volcánica actual, recientemente la nave europea Mars Express y medidas terrestres obtenidas por el telescopio Keck desde la Tierra han encontrado trazas de gas metano en una proporción de 10 partes por 1000 millones. Este gas solo puede tener un origen volcánico o biológico. El metano no puede permanecer mucho tiempo en la atmósfera; se estima en 400 años el tiempo en desaparecer de la atmósfera de Marte, ello implica que hay una fuente activa que lo produce. La pequeña proporción de metano detectada, muy poco por encima del límite de sensibilidad instrumental, impide por el momento dar una explicación clara de su origen, ya sea volcánico y/o biológico. La misión del aterrizador Mars Science Laboratory (Curiosity) incluye equipo para comparar las proporciones de los isótopos C-12, C-13, y C-14 presentes en dióxido de carbono y en metano, para así determinar el origen del metano.
No hay pruebas concluyentes acerca de la existencia de agua en Marte, aunque un estudio publicado en septiembre de 2013, basado en los datos recogidos por el rover Curiosity, afirma que en su superficie habría entre un 1,5 y un 3 % de agua. A lo largo del tiempo se han realizado numerosos descubrimientos de indicios que sugieren la probable existencia de agua en el pasado. Un estudio publicado en 2015 por la NASA concluyó que hace 4300 millones de años y durante 1500 millones de años, el planeta tuvo un extenso océano en el hemisferio norte, con un volumen mayor que el del Ártico, suficiente para cubrir todo el territorio marciano con 130 m de agua.
Casquetes polares
No se dispone todavía de datos suficientes sobre la evolución térmica marciana. Por hallarse Marte mucho más lejos del Sol que la Tierra, sus climas son más fríos, y tanto más por cuanto la atmósfera, al ser tan tenue, retiene poco calor: de ahí que la diferencia entre las temperaturas diurnas y nocturnas sea más pronunciada que en nuestro planeta. A ello contribuye también la baja conductividad térmica del suelo marciano. La temperatura en la superficie depende de la latitud y presenta variaciones estacionales. La temperatura media superficial es de unos 218 K (-55 °C). La variación diurna de las temperaturas es muy elevada como corresponde a una atmósfera tan tenue. Las máximas diurnas, en el ecuador y en verano, pueden alcanzar los 20 °C o más, mientras las mínimas nocturnas pueden alcanzar fácilmente -80 °C. En los casquetes polares, en invierno las temperaturas pueden bajar hasta -130 °C. Enormes tormentas de polvo, que persisten durante semanas e incluso meses, oscureciendo todo el planeta pueden surgir de repente. Están causadas por vientos de más de 150 km/h. Dichas tormentas pueden alcanzar dimensiones planetarias. Durante un año marciano parte del CO2 de la atmósfera se condensa en el hemisferio donde es invierno, o se sublima del polo a la atmósfera cuando es verano. En consecuencia la presión atmosférica tiene una variación anual.
Las estaciones en Marte
Hay un gran debate respecto a la historia pasada de Marte. Para unos, Marte albergó en un pasado grandes cantidades de agua y tuvo un pasado cálido, con una atmósfera mucho más densa, el agua fluyendo por la superficie y excavando los grandes canales que surcan su superficie. La orografía de Marte presenta un hemisferio norte que es una gran depresión y donde los partidarios de Marte húmedo sitúan al Oceanus Borealis, un mar cuyo tamaño sería similar al Mar Mediterráneo. El agua de la atmósfera marciana posee cinco veces más deuterio que en la Tierra. Esta anomalía, también registrada en Venus, se interpreta como que los dos planetas tenían mucha agua en el pasado pero que acabaron perdiéndola. (El agua de mayor peso tiene mayor tendencia a permanecer en el planeta y no perderse en el espacio). Los recientes descubrimientos del robot de la NASA Opportunity, avalan la hipótesis de un pasado húmedo. A finales de 2005 surgió la polémica sobre las interpretaciones dadas a determinadas formaciones de rocas que exigían la presencia de agua, proponiéndose una explicación alternativa que rebajaba la necesidad de agua a cantidades muchos menores y reducía el gran mar o lago ecuatorial a una simple charca donde nunca había existido más de un palmo de agua salada. Algunos científicos han criticado el hecho de que la NASA solo investiga en una dirección buscando evidencias de un Marte húmedo y descartando las demás hipótesis. Así pues tendríamos en Marte tres eras. Durante los primeros 1000 millones de años un Marte calentado por una atmósfera que contenía gases de efecto invernadero suficientes para que el agua fluyese por la superficie y se formaran arcillas, la era Noeica que sería el anciano reducto de un Marte húmedo y capaz de albergar vida. La segunda era duró de los 3800 a los 3500 millones de años y en ella ocurrió el cambio climático, y la era más reciente y larga que dura casi toda la historia del planeta y que se extiende de los 3500 millones de años a la actualidad con un Marte tal como lo conocemos en la actualidad frío y seco. En resumen el paradigma de un Marte húmedo que explicaría los accidentes orográficos de Marte está dejando paso al paradigma de un Marte seco y frío donde el agua ha tenido una importancia mucho más limitada.
La órbita de Marte es muy excéntrica (0,09): entre su afelio y su perihelio, la distancia del planeta al Sol difiere en unos 42,4 millones de kilómetros. Gracias a las excelentes observaciones de Tycho Brahe, Kepler se dio cuenta de esta separación y llegó a descubrir la naturaleza elíptica de las órbitas planetarias consideradas hasta entonces como circulares. Este efecto tiene una gran influencia en el clima marciano, la diferencia de distancias al Sol causa una variación de temperatura de unos 30 °C en el punto subsolar entre el afelio y el perihelio. Si dentro de esa órbita se dibuja la de la Tierra, cuya elipse es mucho menos alargada, puede observarse también que la distancia de la Tierra a Marte se halla sujeta a grandes variaciones. En el momento de la conjunción, es decir, cuando el Sol está situado entre ambos planetas, la distancia entre éstos puede ser de 399 millones de kilómetros y el diámetro aparente de Marte es de 3,5″. Durante las oposiciones más favorables esa distancia queda reducida a menos de 56 millones de kilómetros y el diámetro aparente de Marte es de 25″, alcanzando una magnitud de -2,8 (siendo entonces el planeta más brillante con excepción de Venus). Dada la pequeñez del globo marciano, su observación telescópica presenta interés especialmente entre los períodos que preceden y siguen a las oposiciones.
Marte posee, como Júpiter, algunos asteroides troyanos en los puntos de LaGrange L4 y L5; los tres asteroides reconocidos oficialmente por la Unión Astronómica Internacional y el Minor Planet Center son: 5261 «Eureka», 101429 VF31 y el 121514 UJ7. También se han descubierto en Marte los siguientes asteroides troyanos: 1999 UJ7 (en el punto L 4), 1998 VF31, 2001 DH47, 2001 FG24, y 2001 FR127 (en el punto L 5). Los asteroides coorbitales 1998 QH56 y 1998 SD4 no se consideran como Troyanos porque no son estables y serán alejados por la gravitación de Marte en los próximos 500 000 años.
Las teorías actuales que predicen las condiciones en las que se puede encontrar vida, requieren la disponibilidad de agua en estado líquido. Es por ello tan importante su búsqueda. Un estudio publicado en 2015 por la NASA concluyó que hace 4300 millones de años y durante 1500 millones de años, el planeta tuvo un extenso océano en el hemisferio norte, con un volumen mayor que el del Ártico, suficiente para cubrir todo el territorio marciano con 130 m de agua. Trazas de gas metano fueron detectadas en la atmósfera de Marte en 2003 lo cual es considerado un misterio, ya que bajo las condiciones atmosféricas de Marte y la radiación solar, el metano es inestable y desaparece después de varios años, lo que indica que debe de existir en Marte una fuente productora de metano que mantiene esa concentración en su atmósfera, y que produce un mínimo de 150 toneladas de metano cada año. Se planea que la futura sonda Mars Science Laboratory, incluya un espectrómetro de masas capaz de medir la diferencia entre 14C y 12C para determinar si el metano es de origen biológico o geológico. No obstante, en el pasado existió agua líquida en abundancia y una atmósfera más densa y protectora; éstas son las condiciones que se creen más favorables que hubo de desarrollarse la vida en Marte. El meteorito ALH84001 que se considera originario de Marte, fue encontrado en la Antártida en diciembre de 1984 por un grupo de investigadores del proyecto ANSMET y algunos investigadores consideran que las formas regulares podrían ser microorganismos fosilizados.
Christiaan Huygens hizo las primeras observaciones de áreas oscuras en la superficie de Marte en 1659, y también fue uno de los primeros en detectar los casquetes polares. Otros astrónomos que contribuyeron al estudio de Marte fueron G. Cassini (calculó en 1666 la rotación del planeta en 24 horas y 40 minutos y en 1672 dedujo la existencia de una atmósfera en el planeta), W. Herschel (descubrió la oblicuidad del eje de rotación de Marte y observó nubes marcianas), y J. Schroeter.
Cara de Marte En 1837 los astrónomos alemanes Beer y Mädler publicaron el primer mapamundi de Marte, con datos obtenidos de sus observaciones telescópicas, al que seguirían los del británico Dawes a partir de 1852. El año 1877 presentó una posición muy cercana a la Tierra, y fue un año clave para los estudios de Marte. El astrónomo estadounidense A. Hall descubrió los satélites Fobos y Deimos, mientras el astrónomo italiano G. Schiaparelli se dedicó a cartografiar cuidadosamente Marte; en efecto, hoy en día, se usa la nomenclatura inventada por él para los nombres de las regiones marcianas (Syrtis Major; Mare Tyrrhenum; Solis Lacus, etc.). Schiaparelli también creyó observar unas líneas finas en Marte, a las cuales bautizó como canali. El problema fue que esta palabra se tradujo al inglés como «canals», palabra que implica algo artificial. Esta última palabra despertó la imaginación de mucha gente, especialmente del astrónomo C. Flammarion y del aristócrata P. Lowell. Ellos se dedicaron a especular con que había vida en Marte (los marcianos). Lowell estaba tan entusiasmado con esta idea que se construyó en 1894 su propio observatorio en Flagstaff, Arizona, para estudiar al planeta Marte. Sus observaciones lo convencieron de que no solo había vida en Marte, sino que esa vida era inteligente: Marte era un planeta que se estaba secando, y una sabía y antigua civilización marciana había construido esos canales para drenar agua de los casquetes polares y enviarla hacia las sedientas ciudades. Con el paso del tiempo, el furor de los canales marcianos se fue disipando, ya que muchos astrónomos ni siquiera podían verlos; de hecho, los canales fueron una ilusión óptica. Hacia los años 1950, ya casi nadie creía en civilizaciones marcianas, pero muchos estaban convencidos de que sí que había vida en Marte en forma de musgos y líquenes primitivos, hecho que se puso en duda al ser Marte visitado por primera vez por una nave espacial en 1965.
La primera sonda en visitar Marte fue la soviética Marsnik 1, que pasó a 193 000 km de Marte el 19 de junio de 1963, sin conseguir enviar información.
En 2008, la NASA mantiene un catálogo de 57 meteoritos considerados provenientes de Marte y recuperados en varios países. Estos meteoritos son extremadamente valiosos ya que son las únicas muestras físicas de Marte disponibles para analizar. Los tres meteoritos listados a continuación, exhiben características que algunos investigadores consideran tener indicios de posibles moléculas orgánicas naturales o probables fósiles microscópicos:
Imagen obtenida por un microscopio electrónico de estructuras minerales en el interior del meteorito ALH84001. El meteorito ALH84001 fue encontrado en la Antártida en diciembre de 1984 por un grupo de investigadores del proyecto ANSMET; el meteorito pesa 1,93 kg. Algunos investigadores asumen que las formas regulares podrían ser microorganismos fosilizados, similares a los nanobios o nanobacterias. También se le ha detectado contenido de cierta magnetita que, en la Tierra, solamente se le encuentra en relación con ciertos microorganismos.
Meteorito Shergotty
El meteorito Shergotty, de origen marciano y con masa de 4 kg, cayó en Shergotty, India en agosto 25 de 1865, donde testigos lo recuperaron inmediatamente. Éste meteorito está compuesto de piroxena y se calcula fue formado en Marte hace 165 millones de años y fue expuesto y transformado por agua líquida por muchos años. Ciertas características de este meteorito sugieren la presencia de restos de membranas o películas de posible origen biológico, pero la interpretación de sus formas mineralizadas varía. Astronomía desde Marte
El astrónomo Johannes Kepler señaló a principios del siglo XVII que Marte debía tener dos satélites, en función de un razonamiento subordinado a la «armonía numérica»: la Tierra tiene una luna y Júpiter, en el momento de realizar Kepler su afirmación, se creía que tenía únicamente las cuatro descubiertas por Galileo Galilei en 1610, por lo que a Marte, que estaba entre los dos planetas, le tocaban, proporcionalmente, dos. Una coincidencia muy interesante entre astronomía y literatura es la estrecha semejanza entre Fobos y Deimos y los datos especulados para dos satélites marcianos de ficción descritos por Jonathan Swift en «Los viajes de Gulliver», novela publicada en 1726, aproximadamente 150 años antes que se descubrieran estos satélites, haciéndose eco de las opiniones de Kepler. También el francés Voltaire volverá a recordar a Kepler en su libro de ficción «Micromegas», publicado en 1750, en el que de nuevo se citan de manera especulativa dos satélites naturales de Marte.
Los satélites de Marte fueron descubiertos por el astrónomo estadounidense Asaph Hall en 1877, y fueron bautizados por él, dándole los nombres de los dos hijos que en la mitología griega acompañaban al dios Marte: Fobos (miedo) y Deimos (terror). Aunque son muy pequeños y están demasiado próximos al brillante disco del planeta, ambos pueden ser capturados con telescopios de aficionado (a partir de los 20 cm de abertura) por medio de cámaras CCD.
Nombre | Diámetro (km) | Masa (kg) | Distancia a Marte (km) | Periodo orbital (h) |
---|---|---|---|---|
Fobos | 22.2 km (27×21.6×18.8) | 1.08×1016 | 9377 km | 7,66 |
Deimos | 12.6 km (10×12×16) | 2×1015 | 23460 km | 30,35 |
Las cámaras de la nave Opportunity captaron el 10 de marzo de 2004 el eclipse parcial de Sol causado por el satélite Fobos. El satélite tapa una gran parte del Sol a causa de que es más grande que Deimos y órbita mucho más cerca de Marte. El eclipse de Deimos captado el 4 de marzo de 2004 es comparable a un tránsito de un planeta.
El 10 de noviembre de 2084 ocurrirá el próximo tránsito de la Tierra por el disco solar visto desde Marte. Estos tránsitos se repiten aproximadamente cada 79 años. Los tránsitos de octubre-noviembre ocurren cuando el planeta Marte está en oposición y cerca del nodo ascendente. Los tránsitos de abril-mayo cuando está en el nodo descendente. El tránsito de 11 de mayo de 1984 previsto por J. Meeus sirvió de inspiración al escritor Arthur C. Clarke para escribir Transit of Earth en el cual un astronauta dejado solo en Marte describe el raro fenómeno astronómico poco antes de morir debido a la falta de oxígeno.
Marte era el dios romano de la guerra y su equivalente griego se llamaba Ares. El color rojo del planeta Marte, relacionado con la sangre, favoreció que se le considerara desde tiempos antiguos como un símbolo del dios de la guerra. En ocasiones se hace referencia a Marte como el Planeta Rojo. La estrella Antares, próxima a la eclíptica en la constelación de Scorpio, recibe su nombre como rival (ant-) de Marte, por ser sus brillos parecidos en algunos de sus acercamientos.
Además de la ya mencionada Transit of Earth, existen numerosas referencias a Marte en la ciencia ficción, tales como:
La escala de tiempo geológica de Marte se fundamenta en tres amplias épocas, definidas por el número de cráteres de impacto de la superficie; las superficies más antiguas poseerían más cráteres. Estas eras son denominadas mediante lugares de Marte que pertenecen a esos períodos. La datación precisa de esos periodos no es conocida debido a la existencia de varios modelos diferentes que intentan explicar la tasa de la lluvia meteórica sobre Marte, por lo que las fechas proporcionadas son aproximadas. De la más antigua a la más reciente, estas épocas son:
Basándose en recientes observaciones realizadas con el Espectrómetro de Mapeo Mineralógico en Visible e Infrarrojo (OMEGA), instalado a bordo del orbitador Mars Express, el investigador principal del espectrómetro OMEGA ha propuesto una escala de tiempo alternativa, que tiene en cuenta la correlación entre la mineralogía y la geología del planeta. Esta escala de tiempo alternativa divide la historia del planeta en tres periodos Filósico, Teícico y Siderícico.
Muchos científicos afirman que la colonización del espacio es un paso deseable y tal vez inevitable en el futuro de la humanidad. Marte es el foco de muchas especulaciones y estudios serios sobre posibles colonias. Es el planeta más fácil de alcanzar desde la Tierra en términos de energía requerida (delta-v), pero un viaje allí podría llevar bastantes meses en el espacio (con la tecnología actual, entre 6 y 7 meses).
Fisiológicamente, la atmósfera de Marte puede ser considerada un vacío. Un humano desprotegido perdería el sentido en cerca de 20 segundos y podría sobrevivir no más de un minuto en la superficie de Marte sin un traje espacial. Aun así, las condiciones de Marte son mucho más cercanas a la habitabilidad que las temperaturas extremadamente frías y cálidas de Mercurio, el horno de la superficie de Venus, o el frío criogénico de los planetas exteriores. Sólo las nubes altas de Venus son parecidas en términos de habitabilidad a la Tierra como lo es Marte. Hay hábitats naturales en la Tierra en los que los humanos hemos probado las condiciones de vida en Marte. La máxima altura alcanzada por un globo sonda, registrada en mayo de 1961, fue de 34.668 metros (113.740 pies). La presión a esa altitud es más o menos la misma que la de la superficie de Marte. El frío extremo del Ártico y de la Antártida recrea las extremas temperaturas de Marte. Además, hay desiertos en la Tierra que tienen un aspecto similar al terreno marciano, especialmente el Desierto de Atacama.
Marte no tiene un campo magnético comparable al terrestre. Combinado con su fina atmósfera, esto permite que una cantidad significativa de radiación ionizante llegue a la superficie marciana. La nave Mars Odyssey llevaba un instrumento, el Experimento de radiación ambiental de Marte, (Mars Radiation Environment Experiment, MARIE), para medir el peligro para los humanos. Con él se descubrió que los niveles de radiación en la órbita de Marte son unas dos veces y media superiores a los registrados en la Estación Espacial Internacional. La dosis media era de 22 milirads por día, (220micrograys por día, o 0,080 gray (unidad radiación) al año). Tres años de exposición a estos niveles se acercaría mucho a los límites de seguridad adoptados por la NASA. Los niveles en la superficie de Marte podrían ser algo menores y pudieran variar significativamente de un lugar a otro dependiendo de la altitud y de campos magnéticos puntuales. Una ocasional tormenta solar produciría dosis mucho más altas. Los astronautas en Marte podrían ser advertidos por sensores cercanos al Sol, y probablemente usarían escudo durante dichos eventos. MARIE observó algunas tormentas en Marte que no fueron detectadas en la Tierra, y es debido a que son direccionales. Esto supondría una red de naves orbitando al Sol para asegurarse de detectar todas las amenazas para Marte. Aún queda mucho por aprender sobre la radiación solar. En 2003, la NASA Lyndon B. Johnson Space Center abrió una instalación, el NASA Space Radiation Laboratory, en Brookhaven National Laboratory que emplea acelerador de partículas para simular la radiación solar. Estas instalaciones estudian sus efectos en los seres vivos, así como técnicas para escudarse de dichos eventos. Hay algunas pruebas de que a estos niveles, la radiación crónica no es tan peligrosa como se pensaba, y que de hecho puede ser incluso beneficiosa, dándose un caso de Hormesis con la radiación ionizante. La opinión general de los que han estudiado el tema, es que los niveles de radiación, exceptuando alguna ocasional tormenta solar, que se experimentarían en la superficie de Marte y durante el trayecto hacia allí, son ciertamente un problema, pero no lo suficientemente importante como para evitar realizar viajes con la tecnología actual.
Las comunicaciones con la Tierra son mayormente directas durante el período en que Marte es visible desde aquí. La NASA y la ESA incluyeron equipo de comunicaciones en muchas de sus sondas orbitales, así que Marte ya cuenta con satélites de comunicaciones. Sin embargo, seguramente deberán ser reemplazados por otros antes de poder realizar expediciones de colonización. Sin embargo, las comunicaciones se dificultan enormemente cada período sinódico, durante la conjunción superior, cuando el Sol se interpone entre ambos planetas. El retraso en la llegada de información varía mucho, debido a que luz tarda en viajar de la Tierra a Marte (o viceversa) poco más de tres minutos en las mejores oposiciones (mínima distancia Tierra-Marte), pero en las conjunciones puede llegar a los 22 minutos. Las conversaciones con la Tierra en cualquier época del año, usando el teléfono o la mensajería instantánea son absolutamente imposibles con la tecnología actual. Otros medios, como el correo electrónico y el correo de voz no muestran dificultad. Debería recordarse que la mayor parte de la exploración del Sistema Solar se ha realizado sin el lujo de la comunicación en tiempo real con la Tierra. En la superficie, los radios comunes podrían funcionar entre puntos en línea de visión el uno con el otro. Marte posee una ionosfera, pero no está claro en qué medida podría ser usada para reflejar mensajes a larga distancia, o de alta frecuencia entre puntos alejados sobre la superficie marciana. En cualquier caso, el uso de un gran número de satélites de comunicaciones, quizá incluyendo algunos estratégicamente localizados para evitar el problema de la conjunción superior (actuando a modo de repetidores) sería un problema menor en el contexto de una colonización plena de Marte.
Marte puede dividirse en varias áreas bien diferenciadas según el tipo de colonización posible por realizar:
Regiones polares
Los polos marcianos atrajeron gran interés como lugares de asentamientos debido a que las variaciones estacionales de tamaño habían sido observadas durante muchos años desde la Tierra. Al igual que la Tierra, Marte posee un sol de medianoche durante el verano local, y una noche polar durante el correspondiente invierno. Esto se debe a la similar inclinación del eje de rotación respecto al plano de la eclíptica.
Latitudes medias
La exploración de la superficie está aún en marcha. Los dos rovers marcianos, Spirit y Opportunity, han encontrado muy diversos tipos de suelo y rocas. Esto sugiere que el terreno marciano es muy variado, y que el lugar de un asentamiento no debería elegirse hasta tener mucha más información.
Ecuador
La mayor posibilidad de albergar colonias humanas se encuentra en el ecuador, donde se experimentan las menores variaciones estacionales.
Valles Marineris
Valles Marineris es el «Gran Cañón» de Marte, aunque a una escala mucho mayor: unos 3.000 km de largo, y una media de 8 km de profundidad. La presión atmosférica en el fondo es un 25% mayor que la media, 0,9 kPa contra 0,7 kPa. Dado que su dirección es mayormente este-oeste, sus altos muros no deberían interferir mucho con la llegada de luz al fondo del mismo. En el fondo hay evidencia de que una vez fluyó un río por él; los muros al aire del cañón pudieran ofrecer una auténtica ventana hacia la historia geológica de Marte, de la misma forma que el Gran Cañón lo es en la Tierra.
Lunas marcianas
Aunque no son realmente parte de Marte, las lunas, Fobos y Deimos, son ciertamente atractivas. La delta-v para un retorno a la Tierra desde ellas es baja, y pudiera encontrarse en ellas combustible para cohetes, como hielo de agua. En ese caso, podrían actuar como puestos de abastecimiento para los vehículos que volvieran a la Tierra, y podría ser económicamente viable devolver ciertos materiales al espacio orbital entre las lunas, para otros viajes. Esto ayudaría a la colonización de la superficie.
Dejando a un lado la habitual polémica sobre la colonización espacial, el asentamiento en Marte tiene una serie de problemas particulares:
En un futuro no muy lejano, el crecimiento de la población y la necesidad de recursos naturales posiblemente creará en los humanos presión para plantearse la colonización de nuevos hábitats, como la superficie de los océanos de la Tierra, las profundidades marinas, el espacio orbital terrestre próximo al planeta, la luna y los planetas cercanos, así como crear minas en el sistema solar para poder extraer energía y materiales. Mediante la terraformación, los humanos podrían convertir el planeta Marte en habitable mucho antes de que se tuviera necesidad extrema. Marte podría estar en la zona habitable durante un tiempo, dándole a la humanidad algunos miles de años adicionales para poder desarrollar una tecnología espacial superior y poderse asentar en los bordes del sistema solar.
Marte, de por sí, ya contiene muchos de los minerales que podrían teóricamente utilizarse para la terraformación. Adicionalmente, las investigaciones recientes han descubierto grandes cantidades de hielo en forma de permafrost justo por debajo de la superficie marciana hasta la latitud 60, además de en la superficie de los polos, donde está mezclado con hielo seco y CO2 congelado. También se han creado hipótesis de que hay grandes cantidades de hielo en las capas inferiores de su superficie. Al llegar el verano marciano el dióxido de carbono (CO2) congelado de los polos regresa a la atmósfera, y la pequeña cantidad de agua residual es barrida de allí por vientos que se acercan a las 250 mph (402,336 km/h). Este suceso estacional transporta grandes cantidades de polvo y vapor de agua a la atmósfera, dando lugar a nubes tipo cirro muy semejante a las terrestres. El oxígeno sólo está presente en la atmósfera en cantidades mínimas, pero se encuentra presente en grandes cantidades en óxidos metálicos en la superficie marciana. También hay algo de oxígeno presente en el suelo en la forma de nitratos. El análisis de las muestras de suelo obtenidas por el Phoenix Lander nos indicaba la presencia de perclorato, que se utiliza para liberar el oxígeno en los generadores de oxígeno químicos. Adicionalmente, la electrólisis se podría emplear para separar el agua del planeta en oxígeno e hidrógeno si existiese la electricidad suficiente. Hay quien sugiere que Marte tuvo una vez un medio ambiente relativamente similar al de la Tierra durante un estadio anterior de su desarrollo. Esta similitud nos la da el grosor de la atmósfera marciana, así como la presencia evidente de agua en estado líquido en el planeta en algún momento de su pasado. La atmósfera, tras millones de años, ha disminuido debido al escape de gases al espacio, aunque también se ha condensado parcialmente en forma sólida. Aunque parece que el agua existió en la superficie marciana, ahora sólo hay en los polos y justo debajo de la superficie del planeta en forma de permafrost. Los mecanismos exactos que llevaron a las condiciones atmosféricas actuales de Marte no se conocen del todo, aunque se han barajado varias hipótesis. Una de ellas es que la gravedad actual de Marte indica que los gases ligeros de las capas altas de la atmósfera podrían haber contribuido a la disminución de la misma, debido al exceso de átomos que se escaparon al espacio. La falta evidente de placas tectónicas es otro factor bastante plausible, ya que una falta de actividad tectónica, en teoría, haría que el reciclaje de los gases atrapados en los sedimentos del suelo revirtiéndolos a la atmósfera fuese mucho más lento. La falta de un campo magnético y actividad geológica podría ser la causa del menor tamaño del planeta, lo cual hace que el interior se haya enfriado mucho más rápidamente que el de la Tierra, aunque todos los detalles de este proceso aún nos sean desconocidos. No obstante, se cree que ninguno de estos procesos tenga un impacto significativo en el tiempo de vida típico de la mayoría de las especies, o incluso en la de la civilización humana, pudiendo contrarrestar la lenta pérdida de la atmósfera mediante mecanismos artificiales de bajo mantenimiento
La manera más importante para poder crear una atmósfera en Marte es mediante la importación de agua. Obteniéndola del hielo de los asteroides, o del de las lunas de Júpiter o las de Saturno. Añadir agua y calor al medio ambiente marciano es un punto vital para hacer que este planeta frío y seco sea apropiado para sostener vida.
Una fuente importante de agua cercana es el planeta enano Ceres, el cual, de acuerdo con los estudios, ocupa entre el 25 y el 33% del cinturón de asteroides. La masa de Ceres es de aproximadamente 9.43 x 10^20 kg. Las estimaciones sobre la cantidad de agua que pueda tener este planeta varían considerablemente, pero el 20% es una cantidad típica de entre las dadas. Además, se piensa que gran cantidad de esta agua se encuentra a nivel superficial o casi superficial del planetoide. Usando las estimaciones que acabamos de ofrecer, la masa de agua de Ceres equivale aproximadamente a 1.886 x 10^20 kg. La masa total de Marte es de aproximadamente 6.4185 x 10^23 kg. Por lo tanto, y haciendo cálculos estimados, el agua de que podría haber en Ceres equivaldría a un 0.03 % de la masa total de Marte. El transporte de una cantidad importante de esta agua, o agua en general desde cualquiera de las lunas heladas, sería todo un reto. Por otro lado, cualquier intento de perturbar la órbita de Ceres para añadir al planetoide al planeta Marte (similar a la estrategia de usar tracción gravitacional para desviar los asteroides ), aumentando, de esta manera, la masa marciana una fracción ínfima, pero al mismo tiempo añadiendo una cantidad importante de calor (ya que Ceres no es un cuerpo celeste pequeño), podría causar una perturbación en la órbita marciana además de cambios geológicos prolongados, como el restablecimiento del equilibrio hidrostático, causado incluso por el más suave de los impactos.
Otro método, mucho más complicado, sería utilizar el amoníaco como un potente gas de efecto invernadero (ya que es posible que la naturaleza tenga grandes reservas del mismo congelado en asteroides orbitando las afueras del sistema solar); podría ser posible mover estos asteroides (por ejemplo usando grandes bombas nucleares para explotarlas y hacer que se muevan en la dirección correcta) y enviarlos hacia la atmósfera marciana. Ya que el amoniaco (NH3) tiene mucho nitrógeno quizás podría solventar el problema de tener un gas buffer en la atmósfera. Repetidos pequeños impactos también podría contribuir a incrementar la temperatura y la masa de la atmósfera. La necesidad de un gas buffer es un reto con el que se enfrentarán todos los constructores de atmósfera potenciales. En la Tierra, el nitrógeno es el componente atmosférico primario, constituyendo hasta un 77% de ella. Marte requeriría un componente similar de gas buffer, aunque no necesariamente en tan alta cantidad. Aun así, obtener cantidades importantes de nitrógeno, argón o algún otro gas comparativamente inerte sería bastante complicado.
Otra manera sería importar metano u otros hidrocarbonos, (que son comunes en la atmósfera de Titán y en su superficie). El metano podría ser ventilado hacia la atmósfera donde actuaría como componente del efecto invernadero. El metano (y otros hidrocarburos) también puede ser útil para producir un rápido aumento de la presión de la atmósfera marciana insuficiente. Además, estos gases pueden ser utilizados para la producción (en el próximo paso de la terraformación de Marte) de agua y CO2 de la atmósfera marciana, por la reacción: CH4 + 4 Fe2O3 => CO2 + 2 H2O + 8 FeO Esta reacción probablemente podría iniciarse por el calor o por la irradiación solar UV marciana. Grandes cantidades de los productos resultantes (CO2 y agua) son necesarios para iniciar los procesos fotosintéticos.
La importación de hidrógeno también se puede hacer para la ingeniería de la atmósfera y la Hidrosfera. Por ejemplo, el hidrógeno podría reaccionar con el óxido de hierro (III), en la superficie marciana, que le daría el agua como un producto: H2 + Fe2O3 => H2O + FeO Dependiendo del nivel de dióxido de carbono en la atmósfera, la importación y la reacción del hidrógeno se produce calor, el agua y grafito a través de la reacción de Bosch. Alternativamente, el hidrógeno reacciona con la atmósfera de dióxido de carbono a través de la reacción de Sabatier produciría metano y agua.
Espejos hechos de mylar aluminizado extremadamente fino podrían ser colocados en órbita alrededor de Marte para incrementar la insolación total que recibe. Esto aumentaría la temperatura directamente, y también vaporizaría agua y dióxido de carbono para aumentar el efecto invernadero en el planeta. Aunque generar halocarbonos en Marte podría contribuir a añadir masa a la atmósfera, la función principal sería la de capturar la radiación solar incidente. Los halocarbonos (como los CFCs y PFCs) son potentes gases de efecto invernadero, y son estables en la atmósfera por periodos de tiempo prolongados. Podrían ser producidos por bacterias aerobias modificadas genéticamente o por artilugios mecánicos repartidos sobre la superficie del planeta. El modificar el albedo de la superficie marciana también sería una forma de aprovechar de forma más eficiente la luz solar incidente. El alterar el color de la superficie con un polvo oscuro como el hollín, formas de vida microbiana oscuras o líquenes serviría para transferir una gran cantidad de radiación solar a la superficie en forma de calor antes de que se reflejara de nuevo al espacio. El usar formas de vida es particularmente atractivo ya que podrían propagarse ellas mismas. Se ha sugerido el bombardeo nuclear de la corteza y los casquetes polares como un método rápido y sucio de calentar el planeta. Si se detona un ingenio nuclear en las regiones polares, el intenso calor derretiría grandes cantidades de agua y dióxido de carbono congelados. Los gases producidos harían más densa la atmósfera y contribuirían al efecto invernadero. Adicionalmente, el polvo levantado por la explosión nuclear cubriría el hielo y reduciría su albedo, permitiendo que se fundiese más rápidamente bajo los rayos del sol. La detonación de un ingenio nuclear bajo la superficie calentaría la corteza y ayudaría a la desgasificación del dióxido de carbono atrapado en las rocas. Aunque los ingenios nucleares resultan atractivos en el sentido de que hacen uso de armas peligrosas y obsoletas en la Tierra y añade calor al planeta rápidamente y de forma económica, conlleva las connotaciones negativas de destrucción masiva al ambiente nativo y potenciales efectos perniciosos de la desintegración nuclear.
Se podría usar un parasol ubicado en el punto lagrangiano interno (L1) o en un anillo orbitando el planeta para reducir la insolación total recibida por Venus, enfriando así el planeta. Esto no está directamente relacionado con la inmensa densidad de la atmósfera de Venus, pero serviría para facilitar el uso de otros métodos complementarios. También podría hacer un doble servicio funcionando como generador de energía solar. La construcción de un parasol suficientemente grande es una tarea descomunal. El tamaño de tal estructura haría necesario que se construyese en el espacio. Además existiría la dificultad de mantener un parasol de película fina en el punto lagrangiano interno entre el Sol-Venus, que con la presión de la radiación sería como una enorme vela solar.
Otro modo sería convertir la atmósfera de Venus en compuestos sólidos haciéndola reaccionar con elementos añadidos externamente. Bombardeando Venus con magnesio refinado y calcio metal del planeta Mercurio u otra fuente, podría atraparse el dióxido de carbono en forma de carbonato cálcico y carbonato magnésico. Bombardeando Venus con hidrógeno, posiblemente obtenido de alguna otra fuente del sistema solar exterior y haciéndolo reaccionar con el dióxido de carbono podría producirse grafito y agua mediante la reacción Bosch. Requeriría alrededor de 4•1019 kg de hidrógeno el convertir completamente la atmósfera venusiana, y el agua resultante cubriría alrededor del 80% de la superficie comparado con el 70% de la Tierra. La cantidad de agua producida sería alrededor del 10% de la existente en la Tierra. Un parasol o algo equivalente serían además necesario, ya que el vapor de agua es en sí mismo un gas de efecto invernadero. Los océanos de Venus incrementarían el albedo del planeta y permitirían que se reflejase una mayor cantidad de la radiación solar hacia el espacio.
Recreación artística de la Luna terraformada vista desde la tierra. Venus carece de un campo magnético. Se cree que esto puede haber contribuido notablemente a su estado inhabitable actual, ya que la alta atmósfera está expuesta a la erosión directa del viento solar y ha perdido la mayoría de su hidrógeno original en el espacio. Sin embargo, este es un proceso extremadamente lento, y así pues es improbable que sea significativo en la escala de tiempo de cualquier civilización capaz de terraformar el planeta.
Mercurio se ha sugerido como un posible objetivo para la colonización del espacio del sistema solar interior, junto con Marte, Venus, la Luna y el cinturón de asteroides. Con permanentes colonias que casi con toda seguridad se limiten a las regiones polares, debido a las extremas temperaturas diurnas en otros lugares del planeta. Excursiones a las otras partes del planeta sería algo viable con las medidas apropiadas.
Véanse también: Colonización de la Luna, Colonización de Mercurio, Colonización del sistema solar externo y Colonización de Ceres. Otros posibles candidatos para la terraformación (sólo parcialmente) serían Titán, Calisto, Ganímedes, Europa, la Luna, e incluso Mercurio, Enceladus (una luna de Saturno) y el pequeño Ceres. La mayoría, sin embargo, tienen una masa y gravedad muy pequeñas para soportar una atmósfera por un tiempo indefinido (aunque es posible, pero no seguro, que una atmósfera podría permanecer durante decenas de miles de años o ser reprovisionada). Además, a excepción de la Luna y Mercurio, muchos de estos cuerpos celestes están muy lejos del Sol y habría que añadirle el calor necesario. La terraformación de Mercurio aguarda un tipo diferente de desafío pero con toda seguridad sería más fácil que la terraformación de Venus. Hay discusiones sobre la solución de los polos de Mercurio, que parece realista por parte de algunos. Titán de Saturno nos ofrece ventajas, que otros lugares no poseen, con una presión atmosférica similar a la de la Tierra y abundancia de nitrógeno y agua congelada. Europa de Júpiter, Ganimedes y Calisto también albergan grandes cantidades de agua congelada.
Algunos de los obstáculos a superar para concretar un viaje tripulado a Marte son:
Un motor VASIMIR podría acortar los viajes de forma considerable aunque esta tecnología es muy desconocida por la mayoría de las personas y estados, aunque este motor podría hacer más probables los viajes tripulados a marte en esta generación.
El primer estudio técnico detallado de un viaje a Marte fue de Wernher von Braun, quien publicó El Proyecto Marte en el año 1952. La idea era enviar una flota de diez naves con 70 tripulantes cada una, que llevarían tres aeronaves con alas que aterrizarían en Marte tal cual un avión comercial. Construir las tres naves requeriría de 1000 lanzamientos desde la Tierra. La versión revisada de 1956 requería de 400 lanzamientos y dos naves a enviar a Marte. El proyecto se mostró Man in Space, un episodio de la serie de televisión Disneyland de Walt Disney estrenado en 1955. En 1962, el proyecto Empire del Centro Marshall de vuelos espaciales de la NASA incluyó estudios de viajes tripulados a Marte, realizados por Aeronutronic Ford, General Dynamics y Lockheed Missiles and Space Company. Concluyó que el viaje se podría realizar lanzando ocho cohetes Saturno V y construyendo una nave en la órbita de la Tierra, o bien lanzando una hipotética nave con tecnología posterior a Saturno. El estudio usó datos de viajes espaciales reales de la NASA. Luego de la concreción del Programa Apolo, Von Braun propuso continuar la exploración del Sistema Solar con un viaje tripulado a Marte. Su idea de usar naves Saturno V se refinó: ellas es usarían para construir dos naves de seis tripulantes, con la idea de enviarlas a principios de la década de 1980. El presidente de Estados Unidos, Richard Nixon, optó en cambio por impulsar el proyecto del Transbordador STS. Desde 1981, The Case for Mars fue una serie de conferencias desarrolladas en la Universidad de Colorado en Boulder de Estados Unidos que elaboraron propuestas de viajes tripulados a Marte. Tuvo como novedad la evaluación de extraer recursos en Marte, en vez de usar únicamente los transportados desde la Tierra en el viaje de ida. En 1989, el presidente de Estados Unidos, George H. W. Bush, anunció una Iniciativa de Exploración Espacial, con el objetivo final de enviar personas a Marte, y con la Estación Espacial Internacional como insumo principal. No obstante el Congreso de los Estados Unidos canceló el proyecto por su elevado costo.
El Complejo Marciano Pilotado (MPK en ruso) fue una propuesta de Mikhail Tikhonravov que la Unión Soviética estudió entre 1956 y 1962 con el objetivo de realizar un viaje tripulado a Marte. En la década de 1960, la URSS llevó adelante el TMK, que propuso también viajes orbitales a Marte además de viajes con amartizaje. Otro proyecto fue el MEK, que se inició en 1969.
Tras la culminación de la Guerra Fría a principios de la década de 1990, los países desarrollados se vieron en condiciones de trabajar en conjunto para desarrollar proyectos de viajes tripulados a Marte. Sin embargo, la ausencia de enemistad disminuyó el apoyo político a este tipo de planes. Como continuación de un artículo científico de Robert Zubrin y David Baker como parte de The Case for Mars, Zubrin siguió investigando el uso de recursos marcianos para realizar el proyecto. Así, elaboró el proyecto Mars Direct, que publicó en 1996 en el libro también llamado The Case for Mars. En 1998, Zubirin fundó la Mars Society, una organización que promueve la exploración humana de Marte. Desde la década de 1990, la NASA desarrolló numerosos programas de evaluación de viajes a Marte, entre ellos varias iteraciones de NASA Design, el Vision for Space Exploration y el Hundred Year Starship. Éste último propone viajes sólo de ida, de manera que los recursos se van reponiendo mediante viajes regulares. Rusia está elaborando una estación espacial orbital llamada MARPOST. El Programa Aurora de la Agencia Espacial Europea, iniciado en 2001, propone viajes dentro de 20 años.
Guardar
Guardar
Guardar
Guardar
Tejido vegetal. Cuando hablamos de los tipos y características de los tejidos de las plantas…
El cáncer que se disemina desde el lugar donde se formó hasta una parte del…
La Edad Media es el período de la historia comprendido entre la caída del Imperio Romano…
La cultura medieval. Se entiende por cultura medieval al conjunto de manifestaciones sociales, políticas, económicas…
La Geografía como ciencia. La geografía aparece como ciencia en el siglo XIX, cuando Alexander…
La Prehistoria. Se conoce como prehistoria al periodo de la historia queabarca desde la aparición…