Las Proteínas

Las proteínas. Las proteínas son moléculas formadas por aminoácidos que están unidos por un tipo de enlaces conocidos como enlaces peptídicos. < en francés: protéine < en griego: πρωτεῖος [proteios], ‘prominente, de primera calidad)​ o prótidos​ son macromoléculas formadas por cadenas lineales de aminoácidos.

Por sus propiedades fisicoquímicas, las proteínas se pueden clasificar en proteínas simples (holoproteidos), formadas solo por aminoácidos o sus derivados; proteínas conjugadas (heteroproteidos), formadas por aminoácidos acompañados de sustancias diversas, y proteínas derivadas, sustancias formadas por desnaturalización y desdoblamiento de las anteriores. Están constituidas por unidades estructurales llamados polímeros​.

Las proteínas son necesarias para la vida, sobre todo por su función plástica (constituyen el 80 % del protoplasma deshidratado de toda célula), pero también por sus funciones biorreguladoras (forman parte de las enzimas) y de defensa (los anticuerpos son proteínas).​

Las proteínas desempeñan un papel fundamental para la vida. Representan alrededor del 50 % del peso seco de los tejidos.​ Son las biomoléculas más versátiles y diversas. Son imprescindibles para el crecimiento del organismo y realizan una enorme cantidad de funciones diferentes, entre las que destacan:

  • Estructural. Esta es la función más importante de una proteína (Ej.: colágeno)
  • Contráctil (actina y miosina)
  • Enzimática (Ej.: sacarasa y pepsina)
  • Homeostática: colaboran en el mantenimiento del pH (ya que actúan como un tampón químico)
  • Inmunológica (anticuerpos)
  • Producción de costras (Ej.: fibrina)
  • Protectora o defensiva (Ej.: trombina y fibrinógeno)
  • Transducción de señales (Ej.: rodopsina).

Las proteínas están formadas por aminoácidos. Las proteínas de todos los seres vivos están determinadas mayoritariamente por su genética (con excepción de algunos péptidos antimicrobianos de síntesis no ribosomal), es decir, la información genética determina en gran medida qué proteínas tiene una célula, un tejido y un organismo.

Las proteínas se sintetizan dependiendo de cómo se encuentren regulados los genes que las codifican. Por lo tanto, son susceptibles a señales o factores externos. El conjunto de las proteínas expresadas en una circunstancia determinada es denominado proteoma.

Las proteínas representan alrededor del 8-15% del peso seco de los granos de los cereales y el 40% en las semillas de las leguminosas. Las proteínas se almacenan como cuerpos proteicos sólidos de 0,1 a 0,25 micrómetros de diámetro, rodeados por una membrana simple, pudiedo ser proteínas enzimáticas (metabólicamente activas) o proteínas de reserva. Se encuentran en los cotiledones de las leguminosas (fabáceas) y en la capa más externa del endosperma (capa de aleurona) y en todo el endosperma de las gramíneas (poáceas) rodeando a los gránulos de almidón y entre ellos.

Los cuerpos proteicos varían en su composición y pueden presentar inclusiones cristaloides o globoides y cristales de oxalato de calcio como drusas. Durante la germinación las proteínas de reserva son degradadas a aminoácidos.

Aproximadamente el 85% de las proteínas presentes en los cereales al combinarse con el agua forman el «gluten». La propiedad visco-elástica del gluten determina la calidad de la harina de trigo para la industria panadera, porque otorga a la masa capacidad para retener los productos de la fermentación de las levaduras, manteniéndose esponjosa. Por lo tanto, el parámetro más usado por los países productores y exportadores de trigo para premiar su calidad es la proteína.

A partir de noviembre de 1995, en nuestro país se implementa un programa de bonificaciones que beneficia a los trigos que superen el 11% de contenido proteico. De este modo, se busca incentivar a los productores para aumentar los niveles de calidad en la producción triguera.

Por otro lado, en la actualidad se ha comprobado que, debido a cambios en los hábitos alimenticios, se ha incrementado la demanda de bizcochos y galletas, en cuya producción intervienen harinas que no necesitan de las propiedades panaderas. Dichas harinas provienen de los llamados trigos blandos (de bajo contenido de proteínas). Los principales países productores de trigo como EEUU, Canadá y Australia producen y exportan dichos granos.

Si bien los estudios de mercado estarían indicando la conveniencia en la incorporación de trigos blandos en la producción y exportación para nuestro país, aún su producción no está siendo impulsada.

Las Proteínas.Bioquímica

Los prótidos o proteínas son biopolímeros formados por un gran número de unidades estructurales simples repetitivas (monómeros) denominadas aminoácidos, unidas por enlaces peptídicos. Debido a su gran tamaño, cuando estas moléculas se dispersan en un disolvente adecuado, forman siempre dispersiones coloidales, con características que las diferencian de las disoluciones de moléculas más pequeñas. Muchas proteínas presentan carga neta en ciertos rangos de pH del medio. Por ello pueden considerarse ionómeros.

Por hidrólisis, las moléculas de proteína se dividen en numerosos compuestos relativamente simples, de masa molecular pequeña, que son las unidades fundamentales constituyentes de la macromolécula. Estas unidades son los aminoácidos, de los cuales existen veinte especies diferentes y que se unen entre sí mediante enlaces peptídicos. Cientos y miles de estos aminoácidos pueden participar en la formación de la gran molécula polimérica de una proteína.

Todas las proteínas tienen carbono, hidrógeno, oxígeno y nitrógeno, y casi todas poseen también azufre. Si bien hay ligeras variaciones en diferentes proteínas, el contenido de nitrógeno representa, por término medio, 16 % de la masa total de la molécula; es decir, cada 6,25 g de proteína contienen 1 g de N. El factor 6,25 se utiliza para estimar la cantidad de proteína existente en una muestra a partir de la medición de N de la misma.

La síntesis proteica es un proceso complejo cumplido por las células según las directrices de la información suministrada por los genes.

Las proteínas son largas cadenas de aminoácidos unidas por enlaces peptídicos entre el grupo carboxilo (-COOH) y el grupo amino (-NH2) de residuos de aminoácido adyacentes. La secuencia de aminoácidos en una proteína está codificada en su gen (una porción de ADN) mediante el código genético. Aunque este código genético específica los 20 aminoácidos «estándar» más la selenocisteína y —en ciertos Archaea— la pirrolisina, los residuos en una proteína sufren a veces modificaciones químicas en la modificación postraduccional: antes de que la proteína sea funcional en la célula, o como parte de mecanismos de control.

Las proteínas también pueden trabajar juntas para cumplir una función particular, a menudo asociándose para formar complejos proteicos estables.

Las Proteínas.Biosíntesis

Las proteínas se ensamblan a partir de sus aminoácidos utilizando la información codificada en los genes. Cada proteína tiene su propia secuencia de aminoácidos que está especificada por la secuencia de nucleótidos del gen que la codifica. El código genético está formado por un conjunto de tri-nucleótidos denominados codones. Cada codón (combinación de tres nucleótidos) designa un aminoácido, por ejemplo, AUG (adenina-uracilo-guanina) es el código para la metionina. Como el ADN contiene cuatro nucleótidos distintos, el número total de codones posibles es 64; por lo tanto, existe cierta redundancia en el código genético, estando algunos aminoácidos codificados por más de un codón.

Los genes codificados en el ADN se transcriben primero en ARN pre-mensajero mediante proteínas como la ARN polimerasa. La mayor parte de los organismos procesan entonces este pre-ARNm (también conocido como transcrito primario) utilizando varias formas de modificación post-transcripcional para formar ARNm maduros, que se utilizan como molde para la síntesis de proteínas en el ribosoma. En los procariotas el ARNm puede utilizarse tan pronto como se produce, o puede unirse al ribosoma después de haberse alejado del nucleoide.

Por el contrario, los eucariotas sintetizan el ARNm en el núcleo celular y lo translocan a través de la envoltura nuclear hasta el citoplasma donde se realiza la síntesis proteica. La tasa de síntesis proteica es mayor en procariotas que en eucariotas y puede alcanzar los 20 aminoácidos por segundo. ​

El proceso de sintetizar una proteína a partir de un molde de ARNm se denomina traducción. El ARNm se carga en el ribosoma y se lee, tres nucleótidos cada vez, emparejando cada codón con su anticodón complementario localizado en una molécula de ARN de transferencia que lleva el aminoácido correspondiente al codón que reconoce. La enzima aminoacil ARNt sintetasa «carga» las moléculas de ARN de transferencia (ARNt) con los aminoácidos correctos. El polipéptido creciente se denomina cadena naciente. Las proteínas se biosintetizan siempre del extremo N-terminal al extremo C-terminal.

De esta forma, se consigue la estructura primaria de la proteína, es decir, su secuencia de aminoácidos. Ahora ésta debe plegarse de la forma adecuada para llegar a su estructura nativa, la que desempeña la función. Anfinsen en sus trabajos con la ribonucleasa A, postuló su hipótesis que dice que toda la información necesaria para el plegamiento se encuentra contenida enteramente en la estructura primaria.

Esto dio pie a que en 1969 Levinthal sugiriese la existencia de una paradoja a la que se conoce como la paradoja de Levinthal: si una proteína se pliega explorando al azar todas las conformaciones posibles necesitaría un tiempo mayor que la edad del propio Universo.

Dado que las proteínas se pliegan en un tiempo razonable y de forma espóntanea, se ha resuelto esta paradoja indicando que las proteínas no prueban todas las conformaciones posibles, sino que eligen una vía de plegamiento específica con un número de pasos finitos, es decir, se reduce el hiperespacio potencial de plegamiento. También cabe mencionar la existencia de chaperonas moleculares, proteínas que ayudan a otras a plegarse con gasto energético (ATP).

El tamaño de la proteína sintetizada puede medirse por el número de aminoácidos que contiene y por su masa molecular total, que normalmente se expresa en daltons (Da) (sinónimo de unidad de masa atómica), o su unidad derivada kilo Dalton (kDa). Por ejemplo, las proteínas de la levadura tienen en promedio 466 aminoácidos y una masa de 53 kDa. Las proteínas más largas que se conocen son las titinas, un componente del sarcómero muscular, con una masa molecular de casi 3.000 kDa y una longitud total de casi 27 000 aminoácidos.​

Las Proteínas.Síntesis química

Mediante una familia de métodos denominados de síntesis peptídica es posible sintentizar químicamente proteínas pequeñas. Estos métodos dependen de técnicas de síntesis orgánica como la ligación para producir péptidos en gran cantidad.​ La síntesis química permite introducir aminoácidos no naturales en la cadena polipeptídica, como por ejemplo amino ácidos con sondas fluorescentes ligadas a sus cadenas laterales. ​ Estos métodos son útiles en laboratorios de bioquímica y biología celular, pero no tanto para aplicaciones comerciales.

La síntesis química es ineficiente para polipéptidos de más de 300 aminoácidos, y las proteínas sintetizadas puede que no adopten fácilmente su estructura tridimensional nativa. La mayor parte de los métodos de síntesis química proceden del extremo C-terminal al extremo N-terminal, en dirección contraria por tanto a la reacción biológica.

Las Proteínas.Proteoma

El Proteoma son todas las proteínas expresadas por un genoma, célula o tejido.

Las Proteínas.Funciones

Las proteínas ocupan un lugar de máxima importancia entre las moléculas constituyentes de los seres vivos (biomoléculas) y parte de las enzimas, que son los principales catalizadores de las células. Prácticamente todos los procesos biológicos dependen de la presencia o la actividad de este tipo de moléculas. Bastan algunos ejemplos para dar idea de la variedad y trascendencia de las funciones que desempeñan. Son proteínas:

  • La actina y la miosina, responsables finales del acortamiento del músculo durante la contracción
  • Los anticuerpos, encargados de acciones de defensa natural contra infecciones o agentes patógenos
  • Funciones de reserva. Como la ovoalbúmina en el huevo, o la caseína de la leche
  • El colágeno, integrante de fibras altamente resistentes en tejidos de sostén
  • Casi todas las enzimas, catalizadores de reacciones químicas en organismos vivientes
  • La hemoglobina y otras moléculas con funciones de transporte en la sangre
  • Muchas hormonas, reguladores de actividades celulares
  • Los receptores de las células, a los cuales se fijan moléculas capaces de desencadenar una respuesta determinada.

Todas las proteínas realizan elementales funciones para la vida celular, pero además cada una de éstas cuenta con una función más específica de cara a nuestro organismo.

Debido a sus funciones, se pueden clasificar en:

1. Catálisis: Está formado por enzimas proteicas que se encargan de realizar reacciones químicas de una manera más rápida y eficiente. Procesos que resultan de suma importancia para el organismo. Por ejemplo la pepsina, ésta enzima se encuentra en el sistema digestivo y se encarga de degradar los alimentos.

2. Reguladoras: Las hormonas son un tipo de proteínas las cuales ayudan a que exista un equilibrio entre las funciones que realiza el cuerpo. Tal es el caso de la insulina que se encarga de regular la glucosa que se encuentra en la sangre.

3. Estructural: Este tipo de proteínas tienen la función de dar resistencia y elasticidad que permite formar tejidos así como la de dar soporte a otras estructuras. Este es el caso de la tubulina que se encuentra en el citoesqueleto.

4. Defensiva: Son las encargadas de defender el organismo. Glicoproteínas que se encargan de producir inmunoglobulinas que defienden al organismo contra cuerpos extraños, o la queratina que protege la piel, así como el fibrinógeno y protrombina que forman coágulos.

5. Transporte: La función de estas proteínas es llevar sustancias a través del organismo a donde sean requeridas. Proteínas como la hemoglobina que lleva el oxígeno por medio de la sangre.

6. Receptoras: Este tipo de proteínas se encuentran en la membrana celular y llevan a cabo la función de recibir señales para que la célula pueda realizar su función, como acetilcolina que recibe señales para producir la contracción.

Estructura

Las proteínas. Estructuras de las proteínas

Estructura de las proteínas

Es la manera como se organiza una proteína para adquirir cierta forma, presentan una disposición característica en condiciones fisiológicas, pero si se cambian estas condiciones como temperatura o pH pierde la conformación y su función, proceso denominado desnaturalización. La función depende de la conformación y ésta viene determinada por la secuencia de aminoácidos, termodinámicamente solo una conformación es funcional.

Para el estudio de la estructura es frecuente considerar una división en cuatro niveles de organización, aunque el cuarto no siempre está presente.

Conformaciones o niveles estructurales de la disposición tridimensional:

  • Estructura primaria
  • Estructura secundaria
  • Estructura terciaria
  • Estructura cuaternaria

Las proteínas adquieren su estructura instantáneamente, no pasan por cada una de las estructuras.

Dentro de estos niveles estructurales también existen:

  • Giros: están compuestos por tres o cuatro aminoácidos, son giros se encuentran en la superficie de una proteína, formando curvas cerradas que redirigen el esqueleto del polipéptido de vuelta hacia el interior, glicina y prolina son comúnmente presentes en los giros, son estructuras definidas. ​
  • Bucles: pueden presentar diferentes formas, estos son partes del esqueleto polipeptídico, son curvas más largas que los giros. ​
  • Motivos: o pliegues son combinaciones particulares de estructuras secundaria, se acumulan en la estructura terciaria de una proteína. En algunos casos, los motivos son para una función específica asociada, los tres principales motivos son: ​
    • Hélice-giro-hélice: caracteriza a la familia de factores transcripcionales.
    • Dedo de cinc: encontrado en proteínas que enlazan ARN o ADN.
    • Hélice superenrollada: presente en proteínas fibrosas.
  • Dominios: es parte de la estructura terciaria de las proteínas de más de 15.000 MW, es una región compacta plegada del polipéptido, pueden ser diferentes combinaciones de motivos, por ejemplo, la membrana viral presenta dos tipos de dominios, un dominio globular y un dominio fibroso.

Las proteínas. Propiedades de las proteínas

Cinco son las propiedades principales que permiten la existencia y aseguran la función de las proteínas:

  • Amortiguador de pH (conocido como efecto tampón): Actúan como amortiguadores de pH debido a su carácter anfótero, es decir, pueden comportarse como ácidos (donando electrones) o como bases (aceptando electrones).
  • Capacidad electrolítica: Se determina a través de la electroforesis, técnica analítica en la cual si las proteínas se trasladan al polo positivo es porque su molécula tiene carga negativa y viceversa.
  • Especificidad: Cada proteína tiene una función específica que está determinada por su estructura primaria.
  • Estabilidad: La proteína debe ser estable en el medio donde desempeñe su función. Para ello, la mayoría de proteínas acuosas crean un núcleo hidrofóbico empaquetado. Está relacionado con su vida media y el recambio proteico.
  • Solubilidad: Es necesario solvatar la proteína, lo cual se consigue exponiendo residuos de similar grado de polaridad al medio en la superficie proteica. Se mantiene siempre y cuando los enlaces fuertes y débiles estén presentes. Si se aumenta la temperatura y el pH se pierde la solubilidad.

Las proteínas. Desnaturalización

Si en una disolución de proteínas se producen cambios de pH, alteraciones en la concentración, agitación molecular o variaciones bruscas de temperatura, la solubilidad de las proteínas puede verse reducida hasta el punto de producirse su precipitación. Esto se debe a que los enlaces que mantienen la conformación filamentosa se rompen y la proteína adopta la conformación globular. De este modo, la capa de moléculas de agua no recubre completamente a las moléculas proteicas, las cuales tienden a unirse entre sí dando lugar a grandes partículas que precipitan.

Además, sus propiedades biocatalizadoras desaparecen al alterarse el centro activo. Las proteínas que se hallan en ese estado no pueden llevar a cabo la actividad para la que fueron diseñadas, en resumen, no son funcionales.

Esta variación de la conformación se denomina desnaturalización. La desnaturalización no afecta a los enlaces peptídicos: al volver a las condiciones normales, puede darse el caso de que la proteína recupere la conformación primitiva, lo que se denomina renaturalización.

Ejemplos de desnaturalización son la leche cortada como consecuencia de la desnaturalización de la caseína, la precipitación de la clara de huevo al desnaturalizarse la ovoalbúmina por efecto del calor o la fijación de un peinado del cabello por efecto de calor sobre las queratinas del pelo.​

Las proteínas. Determinación de la estabilidad proteica

La estabilidad de una proteína es una medida de la energía que diferencia al estado nativo de otros estados «no nativos» o desnaturalizados. Hablaremos de estabilidad termodinámica cuando podamos hacer la diferencia de energía entre el estado nativo y el desnaturalizado, para lo cual se requiere reversibilidad en el proceso de desnaturalización. Y hablaremos de estabilidad cinética cuando, dado que la proteína desnaturaliza irreversiblemente, solo podemos diferenciar energéticamente la proteína nativa del estado de transición (el estado limitante en el proceso de desnaturalización) que da lugar al estado final.

En el caso de las proteínas reversibles, también se puede hablar de estabilidad cinética, puesto que el proceso de desnaturalización también presenta un estado limitante. Se ha demostrado que algunas proteínas reversibles pueden carecer de dicho estado limitante, aunque es un tema aún controvertido en la bibliografía científica.

La determinación de la estabilidad proteica puede realizarse con diversas técnicas. La única de ellas que mide directamente los parámetros energéticos es la calorimetría (normalmente en la modalidad de calorimetría diferencial de barrido). En ésta se mide la cantidad de calor que absorbe una disolución de proteína cuando es calentada, de modo que al aumentar la temperatura se produce una transición entre el estado nativo y el estado desnaturalizado que lleva asociada la absorción de una gran cantidad de calor.

El resto de técnicas miden propiedades de las proteínas que son distintas en el estado nativo y en el estado desplegado. Entre ellas se pueden citar la fluorescencia de triptófanos y tirosinas, el dicroísmo circular, radio hidrodinámico, espectroscopia infrarroja y la resonancia magnética nuclear. Una vez hemos elegido la propiedad que vamos a medir para seguir la desnaturalización de la proteína, podemos distinguir dos modalidades: Aquellas que usan como agente desnaturalizante el incremento de temperatura y aquellas que hacen uso de agentes químicos (como urea, cloruro de guanidinio, tiocianato de guanidinio, alcoholes, etc.).

Estas últimas relacionan la concentración del agente utilizado con la energía necesaria para la desnaturalización. Una de las técnicas que han emergido en el estudio de las proteínas es la microscopía de fuerza atómica, esta técnica es cualitativamente distinta de las demás, puesto que no trabaja con sistemas macroscópicos sino con moléculas individuales. Mide la estabilidad de la proteína a través del trabajo necesario para desnaturalizarla cuando se aplica una fuerza por un extremo mientras se mantiene el otro extremo fijo a una superficie.

La importancia del estudio de la estabilidad proteica está en sus implicaciones biomédicas y biotecnológicas. Así, enfermedades como el Alzheimer o el Parkinson están relacionadas con la formación de amiloides (polímeros de proteínas desnaturalizadas). El tratamiento eficaz de estas enfermedades podría encontrarse en el desarrollo de fármacos que desestabilizaran las formas amiloidogénicas o bien que estabilizaran las formas nativas. Por otro lado, cada vez más proteínas van siendo utilizadas como fármacos. Resulta obvio que los fármacos deben presentar una estabilidad que les dé un alto tiempo de vida cuando están almacenados y un tiempo de vida limitado cuando están realizando su acción en el cuerpo humano.

Su uso en las aplicaciones biotecnológicas se dificulta debido a que pese a su extrema eficacia catalítica presentan una baja estabilidad ya que muchas proteínas de potencial interés apenas mantienen su configuración nativa y funcional por unas horas.

Las proteínas. Clasificación

Según su forma

Fibrosas: presentan cadenas polipeptídicas largas y una estructura secundaria atípica. Son insolubles en agua y en disoluciones acuosas. Algunos ejemplos de éstas son queratina, colágeno y fibrina.

Globulares: se caracterizan por doblar sus cadenas en una forma esférica apretada o compacta dejando grupos hidrófobos hacia adentro de la proteína y grupos hidrófilos hacia afuera, lo que hace que sean solubles en disolventes polares como el agua. La mayoría de las enzimas, anticuerpos, algunas hormonas y proteínas de transporte, son ejemplos de proteínas globulares.

Mixtas: posee una parte fibrilar (comúnmente en el centro de la proteína) y otra parte globular (en los extremos).

Las proteínas. Según su composición química

Las proteínas según su composición química pueden ser clasificadas en:

1.- Proteínas Simples u Holoproteínas: en su hidrólisis solo produce aminoácidos. Ejemplos de estas son la insulina y el colágeno (globulares y fibrosas), albúminas. Proteína

2.- Proteínas Conjugadas o heteroproteína: estas proteínas contienen cadenas polipeptídicas y un grupo prostético. La porción no aminoacídica se denomina grupo prostético, estos pueden ser un ácido nucleico, un lípido, un azúcar o ion inorgánico. Ejemplo de estas son la mioglobina y los citocromo. Las proteínas conjugados o heteroproteínas se clasifican de acuerdo a la naturaleza de su grupo prostético:

Nucleoproteínas: Su grupo prostético son los ácidos nucleicos.

Lipoproteínas: Su grupo prostético son los fosfolípidos, colesterol y triglicéridos.

Metaloproteínas: El grupo prostético está formado por metales.

Cromoproteínas: Son proteínas conjugadas por un grupo cromóforo (sustancia coloreada que contiene un metal).

Glucoproteínas: El grupo prostético está formado por los carbohidratos.

Fosfoproteínas: Son proteínas conjugadas con un radical que contiene fosfato, distinto de un ácido nucleico o de un fosfolípido.

Las proteínas. Nutrición

Fuentes de proteínas

Las fuentes dietéticas de proteínas incluyen carne, huevos, legumbres, frutos secos, cereales, verduras y productos lácteos tales como queso o yogur. Tanto las fuentes proteínas animales como los vegetales poseen los 20 aminoácidos necesarios para la alimentación humana.

Las proteínas. Calidad proteica

Las diferentes proteínas tienen diferentes niveles de familia biológica para el cuerpo humano. Muchos índices han sido definidos para medir la tasa de utilización y retención de proteínas en humanos. Estos incluyen valor biológico, NPU (Net Protein Utilización), NPR (Cociente Proteico Neto) y PDCAAS (Protein Digestibility Corrected Amino Acids Score), la cual fue desarrollado por la FDA mejorando el PER (Protein Efficiency Ratio). Estos métodos examinan qué proteínas son más eficientemente usadas por el organismo.

Las proteínas. Reacciones de reconocimiento

  • Reacción de Biuret

El reactivo de Biuret está formado por una disolución de sulfato de cobre en medio alcalino, este reconoce el enlace peptídico de las proteínas mediante la formación de un complejo de coordinación entre los iones Cu2+ y los pares de electrones no compartidos del nitrógeno que forma parte de los enlaces peptídicos, lo que produce una coloración rojo-violeta.

  • Reacción de los aminoácidos azufrados

Se pone de manifiesto por la formación de un precipitado negruzco de sulfuro de plomo. Se basa esta reacción en la separación mediante un álcali, del azufre de los aminoácidos, el cual, al reaccionar con una solución de acetato de plomo, forma el sulfuro de plomo.

  • Reacción de Millon

Reconoce residuos fenólicos, o sea aquellas proteínas que contengan tirosina. Las proteínas se precipitan por acción de los ácidos inorgánicos fuertes del reactivo, dando un precipitado blanco que se vuelve gradualmente rojo al calentar.

  • Reacción xantoproteica

Reconoce grupos aromáticos, o sea aquellas proteínas que contengan tirosina o fenilalanina, con las cuales el ácido nítrico forma compuestos nitrados amarillos

Requerimientos proteicos de la dieta por edad y sexo

Cantidades dietéticas recomendadas de proteínas (g/día) en función de la edad y el sexo.
Edad (años) Peso (Kg) Proteínas (g/día)
Lactantes 0-0.5 0.5 6 9 13 14
Niños 1-3 4-6 7-10 13 20 28 16 24 28
Hombres 11-14 15-18 19-24 25-50 más de 50 45 66 72 79 77 45 59 58 63 63
Mujeres 11-14 15-18 19-24 25- 50 más de 50 46 55 58 63 65 46 44 46 50 50

Entradas Relacionadas