La constante de ácida, Ka, (o constante de acidez, o constante de ionización ácida) es una medida de la fuerza de un ácido débil (que no se disocia completamente):
HA ↔ A– + H+ | |
HA es un ácido genérico que se disocia en A–(la base conjugada del ácido), y el ion hidrógeno o protón, H+.
La constante de disociación Ka se escribe como el cociente de las concentraciones de equilibrio (en mol/L):
Ka = | [A–] [H+] | · |
[HA] . |
Por ejemplo, para el caso del ácido acético (CH3COOH ↔ CH3COO– + H+):
Ka = | [CH3COO–] [H+] | = 1,8 x 10-5 a temperatura ambiente |
[CH3COOH] . |
La constante de acidez Ka se suele expresar mediante una medida logarítmica denominada pKa:
pKa = – log10 Ka | |
Ejemplo 1: calcular la constante de acidez Ka de una disolución 1,0 M de ácido benzoico (HBz) que tiene una [H+] = 8 · 10-3 M.
El grado de ionización es suficientemente pequeño como para considerar que la concentración del ácido no disociado en la disolución se mantiene en 1,0 M. El equilibrio será por lo tanto:
HBz | ↔ | Bz– | + | H+ | |
| 8 · 10-3 | 8 · 10-3 |
Ka = | [Bz–] [H+] | = | (8 · 10-3)2 | = 6,4 · 10-5 |
[HBz] . | 1,0 . |
Ejemplo 2: calcular la constante de acidez Ka de un determinado ácido HA que está disociado al 1,0% en una disolución 0,10 M.
Si está disociado al 1,0% del ácido, las concentraciones de A– y H+ serán el 1,0% al 0,10 M, es decir 1,0 · 10-3. El equilibrio será por lo tanto:
HA | ↔ | A– | + | H+ |
0,10-10-3 | 1,0 · 10-3 | 1,0 · 10-3 |
Ka = | [A–] [H+] | = | (1,0 · 10-3)2 | = 1,01 · 10-5 |
[HA] . | 0,1 – 10-3 . |
Ejemplo 3: calcular la concentración [H+] de una disolución 1 M de ácido acético CH3COOH (Ka = 1,8 · 10-5)
Sea la reacción de disociación:
CH3COOH | ↔ | CH3COO– | + | H+ |
1-x | x | x |
Ka = 1,8 · 10-5 = | [CH3COO–] [H+] | = | x2 | |
[CH3COOH] . | 1-x . |
Resolviendo la ecuación obtenemos que x = 4,2 · 10-3 [H+] = x = 4,2 · 10-3 M
Ejercicio 1: Calcular el pH de una disolución 0,02 M de ácido débil HA con constante de acidez Ka= 3,0 · 10-6
Ejercicio 2: Calcular el pKa del ácido del ejercicio anterior
Ejercicio 1: calcular el pH de una disolución 0,02 M de ácido débil HA (constante de acidez Ka= 3,0·10-6)
Solución:
HA | ↔ | A– | + | H+ |
0,02 – x | x | x |
Ka = 3,0 · 10-6 = | [A–] [H+] | = | x2 | |
[HA] . | 0,02-x . |
Ejercicio 2: Calcular el pKa del ácido del ejercicio anterior
La Ciencia Bioquímica La bioquímica es la química de la vida, es decir, la rama…
La biología moderna. La teoría de Darwin es el evento más importante en la historia…
Revolución científica. La Revolución Científica transformó para siempre las formas de entender la naturaleza y…
Historia y Evolución de la Biología. La biología es la ciencia que estudia los seres vivos.…
Tejido vegetal. Cuando hablamos de los tipos y características de los tejidos de las plantas…
El cáncer que se disemina desde el lugar donde se formó hasta una parte del…