El Universo es todo, sin excepciones. Materia, energía, espacio y tiempo, todo lo que existe forma parte del Universo. También se le llama Cosmos. Las ciencias que lo estudian son varias, en especial dos:
El Universo es muy grande, pero quizás no infinito. Si lo fuera, habría infinita materia en infinitas estrellas, y no es así. Al contrario: en cuanto a la materia es, sobre todo, espacio vacío. Hay quien incluso afirma que el Universo en el que vivimos no es real, que es un holograma.
El Universo conocido contiene galaxias, cúmulos de galaxias y estructuras de mayor tamaño llamadas supercúmulos, además de materia intergaláctica. Todavía no sabemos con exactitud su magnitud, a pesar de la avanzada tecnología disponible en la actualidad.
La materia no se distribuye de manera uniforme, sino que se concentra en lugares concretos: galaxias, estrellas, planetas… Sin embargo, se supone que el 90% de lo que existe es una masa oscura, que no podemos observar. Por cada millón de átomos de hidrógeno los 10 elementos más abundantes son:
Símbolo | Elemento químico | Átomos |
H | Hidrógeno | 1.000.000 |
He | Helio | 63.000 |
O | Oxígeno | 690 |
C | Carbono | 420 |
N | Nitrógeno | 87 |
Si | Silicio | 45 |
Mg | Magnesio | 40 |
Ne | Neón | 37 |
Fe | Hierro | 32 |
S | Azufre | 16 |
El Cosmos tiene al menos cuatro dimensiones conocidas: las tres del espacio (largo, alto, ancho) y una de tiempo. Se mantiene unido y en continuo movimiento gracias a una fuerza dominante, la gravedad.
Formamos parte del Sistema Solar, perdido en un brazo de la Vía Láctea, una galaxia que tiene 100.000 millones de estrellas, pero sólo es una entre los centenares de miles de millones de galaxias que forman el Universo.
Dice que hace unos 13.700 millones de años la materia tenía una densidad y una temperatura infinitas. Hubo una explosión violenta y, desde entonces, el universo va perdiendo densidad y temperatura.
El Big Bang es una singularidad, una excepción que no pueden explicar las leyes de la física. Podemos saber qué pasó desde el primer instante, pero el momento y tamaño cero todavía no tienen explicación científica.
cuando se habla del origen del universo. Y, aunque parezca mentira, no es nueva. Hace 1.600 años, la cuestión fue suscitada en el ámbito teológico: «¿Qué hacía Dios antes de crear los Cielos y la Tierra?». Sin duda una buena pregunta, a la que San Agustín respondió con humor que Dios “preparaba el infierno para los que hacen este tipo de preguntas”. Aparte de esta broma, San Agustín fue más lejos y afirmó, con sagacidad, que no tiene sentido preguntar en qué empleaba Dios su tiempo antes de crear el tiempo. De forma semejante, la pregunta «¿qué pasó antes del instante inicial?» no tiene mucho sentido. Pero, naturalmente, esto puede parecer un mero juego de palabras. Nuestra intuición nos dice que cada instante está precedido por otro, por lo que la idea de un «instante inicial», parece absurda. El problema es que nuestra intuición se basa en nuestra experiencia directa, y esa experiencia es muy limitada. En cuanto nos salimos de las escalas físicas humanas«, nuestra intuición suele fallar clamorosamente.
Por ejemplo, a los pensadores de todas las civilizaciones antiguas (con la maravillosa excepción de la griega) les pareció evidente que la Tierra debía ser plana. Estaban extrapolando, erróneamente, la percepción que tenemos cuando nos desplazamos en distancias no mucho mayores que unas decenas de kilómetros. Por supuesto, ahora sabemos que, vista globalmente, la Tierra es redonda. Del mismo modo, el espacio y el tiempo, cuando se consideran globalmente, son muy diferentes de como los percibimos en nuestra experiencia ordinaria.
La teoría del Big Bang se basa, a su vez, en la teoría general de la relatividad, formulada por Albert Einstein en 1915, y que representa una de las cumbres del pensamiento humano. Según la teoría de la relatividad, el espacio y el tiempo no son, como podría parecer, magnitudes inertes e inmutables. Por el contrario, el espacio-tiempo, como un todo, se puede estirar y encoger, curvar y retorcer. Su textura se parece más a la de la goma que a la del cristal. Y su geometría está determinada por la materia y energía que contiene. Todo esto son conceptos revolucionarios y fascinantes. El espacio y el tiempo no son el escenario impasible de un gran teatro, dentro del cual tiene lugar una representación. La teoría nos dice que la forma de ese teatro y su evolución temporal están determinados por los actores que pululan dentro de él, es decir, la materia y energía que pueblan el universo.
Es importante subrayar que la teoría de la relatividad no es una mera especulación. Sus predicciones se han comprobado en una enorme variedad de situaciones físicas, hasta el momento sin un solo fallo. Pensemos, por ejemplo, que, desde el punto de vista relativista, algo tan familiar como la fuerza de la gravedad es simplemente la consecuencia de la curvatura del espacio-tiempo, producida a su vez por la presencia de grandes masas, como planetas y estrellas. De hecho, la teoría de Einstein predice que las fuerzas gravitatorias han de ser tal como prescribe la venerable ley de la gravitación de Newton… con pequeñas correcciones (a veces no tan pequeñas). Y hasta ahora la naturaleza, «cuando ha tenido que elegir», siempre ha dado la razón a Einstein frente a Newton.
Pues bien, cuando se aplica la teoría de la relatividad al universo como un todo, se encuentra que, necesariamente, este ha de pasar por una fase de expansión; es decir, el espacio mismo (con todo su contenido) ha de expandirse, igual que se hincha un pastel en el horno. Vista con los ojos de la teoría de Einstein, la expansión del universo se produce porque el espacio entre las galaxias está dilatándose; o, en otras palabras, se está creando espacio entre ellas. No solo eso, sino que el universo entero que observamos hubo de surgir de un solo punto, en un instante inicial denominado Big Bang.
Por supuesto, los conceptos anteriores no son fáciles de visualizar. Podemos intentarlo utilizando un modelo de universo simplificado, de una sola dimensión espacial (en vez de las tres ordinarias) y una temporal (el tiempo ordinario). En esta imagen, el espacio-tiempo del universo tendría una forma parecida a un gigantesco dedal, como el de la figura. En ese dibujo el tiempo avanza hacia arriba. Cada sección circular del dedal (es decir cada anillo) representa el universo en un instante dado. A medida que avanza el tiempo (y por tanto subimos por la superficie del dedal), los anillos son cada vez más grandes, como consecuencia de la expansión del universo.
El vértice inferior del dedal corresponde al Big Bang: el instante cero, en el que todo el universo estaba comprimido en un punto. En esta imagen, viajar imaginariamente hacia atrás en el tiempo significa deslizarnos hacia abajo por la superficie del dedal. Pero, si una vez alcanzado el instante inicial (Big Bang) intentáramos proseguir en la misma dirección, encontraríamos que regresamos hacia adelante en el tiempo. Es como si paseando por la superficie terrestre nos dirigimos hacia el Sur. En nuestras pequeñas escalas podemos seguir caminando en esa dirección de forma indefinida, pero si llegáramos a alcanzar el polo Sur terrestre, comprobaríamos que no es posible ir más allá. Si insistimos en continuar nuestro viaje, nos encontraremos caminando en dirección Norte.
Notemos que en el dibujo, la superficie de dos dimensiones, que representa el espacio-tiempo, está inmersa en un espacio de tres dimensiones. Esto es consecuencia de una limitación de nuestro cerebro para imaginar superficies curvadas: tenemos que representarlas sumergidas en un espacio tridimensional. Pero matemáticamente no hay ninguna dificultad para formular una superficie o un espacio curvos, sin tener que recurrir a un mundo de dimensionalidad mayor. En nuestro ejemplo, la superficie en forma de dedal que representa el espacio-tiempo no tiene por qué estar sumergida en otro espacio de más dimensiones. Es un universo consistente en sí mismo.
Por tanto, la respuesta a la pregunta «¿qué había antes del Big Bang?» es que nunca hubo un «antes del Big Bang”. ¿Fin de la historia? Podría ser, pero no es seguro.
¿Es fiable la descripción que la teoría del Big Bang hace del origen del universo hasta el preciso instante inicial? Podemos decir que desde un segundo después del Big Bang en adelante, la descripción de la teoría es muy fiable, ya que en ese momento comenzó el proceso de nucleosíntesis primitiva, del que tenemos pruebas experimentales, concretamente la producción de elementos ligeros (como helio o litio) que pueblan el universo en las cantidades predichas por la teoría. Para instantes anteriores, hay que pensar que cuanto más reciente era el universo, a mayor temperatura estaba. Por tanto, una descripción fiable de lo que sucedió exige conocer cómo se comporta la materia a altísimas temperaturas. La física de partículas proporciona una teoría, el llamado Modelo Estándar, que describe con extraordinario éxito el comportamiento de las partículas hasta energías equivalentes a una temperatura de mil billones de grados.
Esto corresponde aproximadamente a una cienmilmillonésima de segundo después del Big Bang. En consecuencia, aunque no disponemos de pruebas experimentales, podemos remontarnos hasta ese instante con bastantes garantías. Pero si seguimos acercándonos al instante inicial, ni siquiera disponemos de una teoría fiable. Es más, la propia teoría general de la relatividad, en su versión tradicional, muestra inconsistencias matemáticas en esas condiciones extremas. Por esta y otras razones, es una creencia extendida entre los físicos teóricos que la teoría necesita modificaciones. Y cuando se disponga de una teoría aún mejor, podría ser que encontremos sorpresas en torno al instante inicial. Pero, incluso sin salirnos del marco teórico actual, existen modelos interesantes que hacen pensar en una historia anterior al Big Bang. Quede claro sin embargo que aquí entramos ya en el terreno de la especulación.
El llamado modelo de universo inflacionario se basa en una hipótesis sobre lo que pudo haber ocurrido en la época más remota del universo. La idea es que algún tipo de campo se hallaba fuera de su mínimo de potencial. En otras palabras, el valor del campo no era el que hacía que su energía fuera mínima. Esta situación también se denomina como «falso vacío». Las ecuaciones de la relatividad predicen que, en una circunstancia así, el universo se expandiría de forma vertiginosa, multiplicando su volumen muchos billones de billones de veces en una pequeñísima fracción de segundo. Cuando finalmente el valor del campo cayó a su mínimo, es decir al vacío verdadero, toda la energía acumulada en él se transformó en la materia y energía que hoy llena el universo.
Hay que decir que el universo inflacionario es algo más que una pura especulación, puesto que ha cosechado grandes éxitos, por ejemplo la predicción correcta de la densidad de materia y energía que realmente presenta nuestro universo. Si el modelo es correcto, en su época más primitiva el universo se expandía de forma desbocada y solo contenía ese campo primigenio. Entonces, en ciertos puntos, al azar, el campo cayó a su valor de mínimo, es decir al vacío verdadero. En estos puntos se formaron “burbujas” de vacío verdadero que empezaron a crecer. Cada burbuja corresponde a un Big Bang “ordinario”, que da lugar a un universo independiente. En este escenario, nuestro universo no es más que una pequeña burbuja que se enciende y se apaga, inmersa en un universo global que se expande salvajemente. No queda claro en el modelo cuándo y cómo fue el inicio de ese universo global del que surgió nuestra burbuja, es decir cómo fue el verdadero instante inicial (en contraposición a nuestro «Big Bang doméstico»).
Científicos encontraron evidencia de la existencia de ondas gravitacionales generadas durante el origen del universo. El hallazgo no solo prueba la teoría de la inflación cósmica sino que abre la posibilidad a la noción de los multiversos.
Expresión Genética. La expresión génica es el proceso por el cual la información codificada por…
La Tierra. Nuestro hogar, el planeta Tierra, es un planeta terrestre y rocoso. Tiene una…
La Biología Celular. La biología celular es la rama de la biología que estudia todos…
La Ciencia Bioquímica La bioquímica es la química de la vida, es decir, la rama…
La biología moderna. La teoría de Darwin es el evento más importante en la historia…
Revolución científica. La Revolución Científica transformó para siempre las formas de entender la naturaleza y…