ANATOMIA

Biología de las citoquinas

Biología de las citoquinas (o citocinas) son un grupo de proteínas de bajo peso molecular que actúan mediando interacciones complejas entre células de linfoides, células inflamatorias y células hematopoyéticas.

Más de 100 péptidos genética y estructuralmente diferentes son reconocidos como citoquinas. Son muy potentes y actúan uniéndose a receptores específicos sobre la superficie celular. Son producidas por diferentes tejidos y tipos celulares. Según la célula que las produzca, se denominan linfocinas (linfocito), monocinas (monocitos, precursores de los macrófagos), adipoquinas (células adiposas o adipocitos), miocinas (células musculares o miocitos) o interleucinas (células hematopoyéticas)

Biología de las citoquinas tienen vida corta actuando a nivel local en forma autocrina y paracrina, solo algunas citoquinas son normalmente presentes en la sangre que son capaces de actuar a distancia; por ejemplo: eritropoyetina (EPO), factor de crecimiento transformante beta (TGF-β, por Transforming Growth Factor), factor de células totipotenciales (SCF, por Stem Cell Factor) y factor estimulante de las colonias de monocitos (MSCF, por Monocyte Colony Stimulant Factor).

Cada citocina es producida por una subpoblación celular en respuesta a diferentes estímulos, induciendo una característica constelación de efectos en cascada agonista, sinérgica o antagónica alterando funcionalmente la célula blanca. Sus actividades son redundantes o sobrepuestas, es decir varias citoquinas diferentes comparten o inducen los mismos cambios o acciones biológicas.

Biología de las citoquinas Principales citoquinas, nomenclatura y función biológica

Clasificar las citoquinas es difícil, pero se pueden agrupar en 4 grupos funcionales de acuerdo al sitio o fase específica de la respuesta inmune en la que actúen, así:

  1. Citoquinas proinflamatorias, actúan en la respuesta inmune innata, inespecífica o inflamación.
  2. Citoquinas que favorecen el desarrollo de inmunidad celular y/o citotóxica.
  3. Citoquinas que favorecen la producción de las diversas clases de inmunoglobulinas o inmunidad humoral y
  4. Citoquinas con funciones extrainmunológicas y/o homeostáticas.

Biología de las citoquinas en inflamación

Las principales citoquinas que actúan en la respuesta inespecífica o inflamación son: Interleucina 1 (IL-1), Factor de Necrosis Tumoral Alfa (TNF-α), Interleucina 8 (IL-8), Interleucina 12 (IL-12), Interleucina 16 (IL-16) e Interferones. Todas ellas son proinflamatorias. IL-6 e IL-12, además, actúan en la inmunidad específica: IL-6 es un factor autocrino de linfocitos B7 mientras que IL-12 estimula la Inmunidad celular citotóxica.

Biología de las citoquinas en inmunidad celular

Durante la inflamación los macrófagos y otras células presentan los antígenos a los linfocitos T colaboradores o «helper» (Th o CD4+), los cuales son muy importantes (si no los principales) moduladores intrínsecos del sistema inmune regulando las dos vías principales de defensa específica: Celular Vs Humoral, a través de la secreción de citoquinas.

En este momento es relevante mencionar que el perfil o “set” de citoquinas secretadas por los linfocitos Th polariza la respuesta inmune hacia una predominantemente citotóxica o celular o hacia el otro extremo predominantemente humoral, esas respuestas son antagónicas o excluyentes entre sí, creando una especie de regulación cruzada muy particular; porque las citoquinas que favorecen la inmunidad humoral inhiben las acciones de las citoquinas que ayudan a la inmunidad celular y viceversa. Los linfocitos Th que inducen respuesta inmune celular se denominan Th1 mientras que aquellos que favorecen las respuestas humorales son Th2.

Biología de las citoquinas

Dos son las principales citoquinas de Inmunidad Celular o Th1: Interferón gamma (IFN-γ) o tipo 2, llamado también interferón Inmune porque sólo es producido por células inmunológicas activadas; la otra citocina es Interleucina 2 o Factor de Crecimiento de Células T (IL-2 o TCGF). IFN-γ es el principal activador de macrófagos y células citotóxicas T y NK. Interesantemente IFN-γ tiene acción en la Inmunidad Humoral, induciendo la producción de IgG. IL-2 fue descubierta en 1977 por Robert Gallo (codescubridor del VIH), es el factor autocrino de crecimiento de las células T, esencial para mantener viables los cultivos de linfocitos T, también genera células citotóxicas especialmente NK y macrófagos antitumorales.

Biología de las citoquinas de inmunidad humoral

La inmunidad humoral se caracteriza por la secreción de anticuerpos por los linfocitos B o células plasmáticas, las cuales son moduladas por las siguientes citoquinas: Interleucina 4 o factor estimulante de células B (IL-4 o BCSF), Interleucina 5 (IL-5), Interleucina 6 (IL-6), Interleucina 10 (IL-10) e interleucina 13 (IL-13). Estas linfocinas son secretadas por linfocitos del tipo Th2, linfocitos B, mastocitos, eosinófilos y algunas por macrófagos (IL-6, IL-13).

IL-4 es la citocina mejor caracterizada en la regulación de la respuesta inmune humoral; en pocas cantidades induce secreción de las subclases de Inmunoglobulina G: IgG1, IgG3 e IgG4; mientras que en excesiva cantidad induce la producción de IgE. Esta citocina antagoniza las acciones biológicas de IFN-γ, tales como la activación de Mf y el desarrollo de células citotóxicas; así inhibe las células Th1.

IL-5 es la citocina con rango de acción más reducido al inducir la generación de Inmunoglobulina A (IgA) y eosinófilos. IL-6 es la mejor estudiada de una familia de citoquinas hematopoiéticas (los otros miembros son de muy reciente descubrimiento: Interleucina 11, Factor inhibitorio de leucemias (LIF), Oncostatin M (OSM), Factor neurotrófico ciliar (CNTF) y cardiotrofina. IL-6 es una citocina pleotrófica, en inflamación es la más potente inductora de hepatocitos para la síntesis de reactivos de fase aguda; potencia los efectos de IL-1 y TNF, aunque no posee la toxicidad de estas y en la inmunidad humoral tiene efectos similares a IL-11 promoviendo la diferenciación, proliferación de linfocitos B y la síntesis de inmunoglobulinas. Adicionalmente, IL-6 es el factor autocrino de crecimiento de células tumorales B malignas y benignas (Mieloma múltiple, Mixoma cardiaco), también esta elevada en Lupus Eritematoso Sistémico (autoinmunidad).

Biología de las citoquinas en homeostasis

Las citoquinas actúan en grupos formando secuencias, o cadenas interactivas en procesos tisulares no inmunológicos como, hematopoyesis, remodelación ósea y en sitios diversos tales como el desarrollo embrionario fetal. Las células progenitoras hematológicas dependen esencialmente del microambiente de la médula ósea finamente regulado por citoquinas secretadas principalmente por (células estromales) para controlar su diferenciación y proliferación hacia células sanguíneas maduras, aunque es difícil clasificarlas por su sobreposición funcional, se distinguen tres categorías de citoquinas:

  1. Aquellas que actúan en las células primordiales multipotentes (multilineales como Interleucina 3 (IL-3) y el factor estimulante de monocitos y granulocitos (GM-CSF).
  2. Las que actúan en líneas celulares ya definidas o comprometidas hacia diferenciación (Restringidas o específicas de líneas definidas tales como Eritropoietina (EPO), eritrocitos, TPO (megacariocitos) G-CSF (granulocitos), M-CSF (monocitos), IL-2 (linfocitos), IL-5 (origina eosinófilos)35.
  3. Las que tienen poco efecto por sí solas pero que inhiben o hacen sinergia funcional de otras citoquinas (stem cell factor (SCF), IL-6, IL-1).

Biología de las citoquinas. Inmunorregulación por citoquinas en inflamación

En inflamación los macrófagos son estimulados para producir múltiples moléculas tales como Óxido Nítrico (NO), chemocinas, leucotrienos, prostaglandinas, factor activador de plaquetas, complemento y especialmente las “monocinas” arriba mencionadas. Todas esas moléculas forman la respuesta inflamatoria, caracterizada por permeabilidad vascular aumentada y reclutamiento de células inflamatorias. Fuera de efectos locales las monocinas tienen efectos sistémicos (metabólicos-endocrinos-inmunes) que contribuyen a las defensas del huésped tales como: inducción de fiebre y proteínas de respuesta aguda inflamatoria (ejem, Proteína C Reactiva).

La respuesta inflamatoria es beneficiosa cuando las monocinas se producen en cantidad adecuada pero deletérea y fatal si se producen en exceso, las citoquinas más tóxicas son IL-1 y TNF las cuales son las principales mediadoras de la respuesta aguda inflamatoria generalizada característicos del choque séptico y la falla multisistémica orgánica.

Biología de las citoquinas

Estas moléculas inflamatorias son finamente reguladas por múltiples inhibidores y antagonistas; rápidamente está emergiendo evidencia sobre citoquinas antiinflamatorias, las cuales son las interleucinas 10, 13, 24 y 42 (producidas por linfocitos Th2). Específicamente IL-10 es una proteína de 35-kD producida por células B, T y Mj activados, cuyas principales actividades in vitro incluyen supresión de la activación de macrófagos y de la producción de TNF-γ, IL-1, IL-6 e IL-8; de especial interés es conocer que IL-10 también inhibe la producción de IFN-γ por las células Th1 y NK, estos datos se complementan con experimentos en modelos murinos donde la neutralización o bloqueo de IL-10 lleva a elevados niveles de TNF e IL-6 y al suministrar IL-10 exógenamente mejora la sobrevida y reduce las citoquinas inflamatorias. Es de resaltar que existe otra citocina poderosamente antiinflamatoria (y/o inmunosupresora?) que actúa sobre muchas células blanco: el factor de crecimiento transformante beta (TGF-β); esta interleucina es muy importante en la regulación y su actividad incrementada induce consecuencias indeseables de la respuesta inmune tales como fibrosis, angiogénesis e inmunosupresión en cáncer.

El factor de crecimiento transformante beta (por sus siglas en inglés TGF-β, abreviatura de transforming growth factor beta) pertenece a una superfamilia de factores de crecimiento que incluye tres isoformas para TGF-β (1,2,3) y otros factores variados, como la proteína morfogénica ósea (BMP), activinas, inhibinas y la hormona antimulleriana. ​

Son un tipo de proteínas, denominados citocinas, que están involucradas en procesos celulares como hematopoyesis, proliferación celular, angiogénesis, diferenciación, migración y apoptosis celular, por lo que es fundamental durante la embriogénesis y el desarrollo. ​

La molécula con una función más amplia es TGF-β1 y es la que se utiliza como factor de referencia. Es una proteína homodimérica, producida por una gran variedad de células, como plaquetas, células endoteliales, linfocitos y macrófagos. Se sintetiza como un precursor inactivo, que debe ser escindido proteolíticamente para generar la proteína activa. Esta se une a dos receptores celulares (tipo I y II) con actividad serina-treonina kinasa, y desencadena la fosforilación de factores citoplásmicos denominados Smads, de los que existen diferentes formas (1,2,3,5,8). Estos Smads fosforilados se unen a Smad4 para formar heterodímeros que entran en el núcleo y se asocian a otras proteínas de unión a ADN para activar o inhibir la transcripción de genes específicos. TGF-β tiene muchos efectos diferentes (se dice por ello que tiene un efecto pleiotrópico), a veces opuestos, en función del tipo de tejido afectado y el tipo de daño.

  • En la mayoría de las células epiteliales, TGF-β es un inhibidor del crecimiento, ya que promueve la expresión de inhibidores del ciclo celular de las familias Cip/Kip e INK4/ARF. En cuanto a las células de la mesénquima, el efecto de TGF-β depende del entorno, pero puede promover la invasión y la metástasis durante el crecimiento de un tumor. A menudo, durante el desarrollo de un tumor se pierde TGF-β, lo que proporciona una ventaja adaptativa a las células tumorales.
  • TGF-β es un agente fibrogénico importante, que estimula la quimiotaxis hacia los fibroblastos y aumenta la expresión de colágeno, fibronectina y proteoglicanos. Además, disminuye la actividad de las proteasas de la matriz extracelular y aumenta las actividades inhibidoras de proteasas, lo que resulta en una disminución de la degradación del colágeno. Por todo ello, TGF-β está implicado en el desarrollo de fibrosis en varios procesos de inflamación crónica, sobre todo en los pulmones, los riñones y el hígado. Además, se observa una expresión elevada de TGF-β en cicatrices hipertróficas, esclerosis sistémicas y en el síndrome de Marfan.
  • TGF-β tiene una fuerte acción antiinflamatoria, pero puede aumentar algunas funciones inmunes. Así, en ratones knock-out para TGF-β1 tienen defectos en linfocitos T reguladores, lo que genera una inflamación extensa con abundante proliferación de linfocitos T y diferenciación de CD4+ en linfocitos «helper» Th1 y Th2.

Tipos

Hay tres tipos primarios:

  • TGF beta 13​
  • TGF beta 24​
  • TGF beta 35​

El precursor de TGFβ4 fue descubierto como gen inducido durante la fase Premenstrual en el estroma del endometrio6​ y se denominan EBAF (Endometrial Bleeding Associated Factor).7​ Más tarde y de forma independiente se descubrió que está involucrado en la determinación asimétrica izquierda-derecha del embrión de los vertebrados, y se le dio el nombre lefty2 (también llamado Lefty A).

Inmunorregulación por citoquinas en inmunidad específica

En 1986 Tim Mossman y Robert F. Coffman encontraron en ratones la polarización de las células T en Th1 vs Th2 determinando el tipo de citoquinas que cada población celular produce, las células que producen ambos tipos de citoquinas al mismo tiempo las denominaron: Th0. Posteriormente se comprobó la regulación cruzada que ejercen esas citoquinas al aumentar el desarrollo de su propio tipo celular mientras inhibe el desarrollo y la producción de citoquinas del otro tipo celular, por ejemplo; IL-4 inhibe el desarrollo y la producción de células Th1 e interferón-γ mientras IFN-γ inhibe la producción de IL-4 y células Th2.

Muy pronto las capacidades inmunoregulatorias de las células Th1 y Th2 se ligaron a múltiples observaciones hechas 30 años antes y magistralmente registradas por Fundenberg (1967) y Parish en 1972 que indicaban la existencia de una relación inversa entre la Inmunidad celular y la humoral, indicando que cuando predomina la inmunidad celular (Th1) la humoral (Th2) está deprimida, al contrario, si predomina la humoral el celular es inhibido.

Hallar células Th1/Th2 en humanos normales fue infructuoso hasta 1992 cuando Romagnani encontró esta polarización inmunológica en personas con enfermedades crónicas. Hoy en día es plenamente aceptada la polarización inmunológica Th1 Vs Th2 y su influencia en diversas situaciones clínicas tales como: infecciones virales crónicas (herpes, VIH).

Cadena de citoquinas en la clínica

Las enfermedades infecciosas crónicas son los principales ejemplos de la polarización Th1/Th2 influenciando el desarrollo clínico de las enfermedades. La lepra lepromatosa y la lehismaniasis diseminada muestran respuesta Th2 mientras que la lepra tuberculoide o localizada y la lehismaniasis localizada son TH1. En infecciones por VIH se conoce que las personas que tienen carga viral persistente mente baja (progresadores lentos) se defienden mejor contra el virus con fuerte repuesta TH1 mientras que los progresores rápidos son TH2, además el desequilibrio en las citoquinas está asociado a muchos fenómenos clínicos presentados por los pacientes VIH positivos tales como: tumores, hipersensibilidad, alérgica, caquexia, etc.

Igualmente, paulatinamente están emergiendo evidencias claras acerca de desórdenes en las cadenas de citoquinas en autoinmunidad, alergias y en la evolución de tumores malignos.

Expresión de moléculas de adhesión en el endotelio y activación de la capacidad microbicida del macrófago.

Estructura

El lipopolisacárido consta principalmente de dos partes: un glucolípido denominado lípido A, y un heteropolisacárido denominado el núcleo (core, en inglés) unidos entre sí por el azúcar ácido 2-keto-3-deoxioctanato (KDO).

  • El lípido A está compuesto por un disacárido de dos unidades de glucosamina fosforilada unidas por enlace β (1→6), esterificado con ácidos grasos; los más comunes son el ácido caproico, ácido láurico, ácido mirístico, ácido palmítico y ácido esteárico. El lípido A es la endotoxina bacteriana, y es el responsable del desencadenamiento de la respuesta inmunitaria en el sujeto infectado y, por tanto, de la fiebre y el malestar.
  • El núcleo se divide en dos partes: una región interna, compuesta por heptosas, ácido 3-desoxi-D-manooctulosónico (Kdo) y L-glicero-D-manoheptosa (Hep), y una externa, formada por hexosas (glucosa, galactosa y N-acetilglucosamina).
  • En algunos microorganismos el LPS presenta una región adicional denominada el antígeno O. Permite clasificar a las especies que lo poseen en serogrupos. Está formado por polímeros de oligosacáridos de longitud variable. Los azúcares que lo componen son neutros y acídicos, aminoazúcares, y raras veces azúcares inusuales como 6-desoxihexosas y 3,6-didesoxihexosas. Actúa como receptor para muchos bacteriófagos, y en el hospedador evita el reconocimiento del lípido A por parte de los macrófagos.

En el lado interno de la membrana exterior de algunas bacterias Gram negativas se encuentra una lipoproteína compleja, es una proteína pequeña de peso molecular deunos 7.200 dalton, que sirve de anclaje entre el LPS y el peptidoglucano; el aminoácido terminal de la lipoproteína es un resido de cisteína modificado para contener un ácido graso unido por enlace amida al grupo amino del aminoácido; es este extremo el que se une con los fosfolípidos de la membrana externa.

El lipopolisacárido es una toxina termoestable, resistente incluso a la esterilización en autoclave, liberada por las bacterias gram negativas al morir y lisarse. Su antígeno provoca un amplio espectro de efectos fisiopatológicos: cuando la cantidad en sangre es suficiente, el lipopolisacárido produce la muerte en una o dos horas, debido a shock irreversible y colapso cardiovascular.

Mecanismo de acción Las endotoxinas, en especial el lípido A activa macrófagos, los cuales secretan Interleucina-1 productora de fiebre, factor de necrosis tumoral causante de necrosis y hemorragias en varios tejidos y óxido nítrico que produce hipotensión arterial. Activan la cascada de la coagulación, fundamentalmente por vía de C3a que produce hipotensión y edema y C5a que estimula la quimiotaxis en neutrófilos. Activan al factor Hageman que es activador de la coagulación hasta el punto de conllevar a una coagulación intravascular diseminada

admin

Compartir
Publicado por
admin

Entradas recientes

Expresión Genética

Expresión Genética. La expresión génica es el proceso por el cual la información codificada por…

4 semanas hace

Historia de la Tierra.

La Tierra. Nuestro hogar, el planeta Tierra, es un planeta terrestre y rocoso. Tiene una…

1 mes hace

La Biología Celular

La Biología Celular. La biología celular es la rama de la biología que estudia todos…

1 mes hace

La Ciencia Bioquímica

La Ciencia Bioquímica La bioquímica es la química de la vida, es decir, la rama…

1 mes hace

La biología moderna

La biología moderna. La teoría de Darwin es el evento más importante en la historia…

1 mes hace

Revolución científica

Revolución científica. La Revolución Científica transformó para siempre las formas de entender la naturaleza y…

1 mes hace